
ISSN 2958-0846 eISSN 2958-0854 Journal of Problems in Computer Science and Information Technologies №4 (1) 2023 https://jpcsip.kaznu.kz

© 2023 Al-Farabi Kazakh National University 13

IRSTI 28.23.01 https://doi.org/10.26577/jpcsit2023v1i4a2

N.M. Kassymbek1* , A.S. Rakhimzhanova2

1U.A. Joldasbekov Institute of Mechanics and Engineering, Almaty, Kazakhstan
2Astana IT University, Astana, Kazakhstan
*e-mail: nuryslam.qassymbek@gmail.com

COMPARATIVE STUDY OF PARALLEL ALGORITHMS
FOR MACHINE LEARNING METHODS

IRSTI 28.23.01 https://doi.org/10.26577/jpcsit2023v1i4a2

N.M. Kassymbek1* , A.S. Rakhimzhanova2

1U.A. Joldasbekov Institute of Mechanics and Engineering, Almaty, Kazakhstan
2Astana IT University, Astana, Kazakhstan
*e-mail: nuryslam.qassymbek@gmail.com

COMPARATIVE STUDY OF PARALLEL ALGORITHMS FOR MACHINE LEARNING
METHODS

Abstract. In the modern world, as the amount of data used in machine learning is constantly growing, the task
of accelerating the training of models on large datasets becomes relevant. To solve this problem, methods of
parallel data processing are used. This paper discusses methods of parallel data processing for machine learning.
Linear regression and random forest are considered as machine learning methods. Parallel algorithms based on the
MPI interface were developed for each method. The results of the experiments showed that both methods give
acceleration compared to the sequential algorithm. However, the acceleration in the case of random forest was
significantly higher than in the case of linear regression. This is because random forest is a more computationally
efficient method than linear regression. Therefore, it can be concluded that Random Forest is the most effective
machine learning approach for parallel data processing. This statement is confirmed by the results of experiments
conducted in this work. Overall, the experimental results show that the use of parallel algorithms in machine
learning can significantly speed up model training when working with large data sets. Random forest is the most
efficient method for parallel data processing, as it is more computationally efficient and has higher scalability.

Key words: Machine Learning, Linear Regression, Random Forest, Parallel Computing.

1 Introduction

Machine learning (ML) is a branch of artificial
intelligence dedicated to creating algorithms that
can learn from data without the need for explicit
programming [1,2]. These algorithms find
applications in various fields such as image
recognition, natural language processing, and
predictive analysis.

One of the most widely used ML methods is
linear regression [3]. Linear regression is employed
to forecast continuous values using a dataset
containing pairs of independent and dependent
variables [4]. Traditional linear regression training
operates sequentially, and for substantial datasets,
it can be computationally intensive. This is
attributed to the quadratic nature of the matrix
operation involved in the normal function, utilized
to calculate the weights for linear regression, which
scales with the number of observations in the
dataset.

The random forest serves as an ensemble
machine learning method applied to both
classification and regression tasks. It involves
numerous decision trees trained on diverse subsets
of the dataset [5,6]. Conventional random forest
training is likewise a sequential procedure, and its

computational demands can be high, particularly
for sizable datasets. This is due to the necessity of
computing numerous data splits for each decision
tree.

Parallel programming is a software
development methodology that allows multiple
tasks to be run simultaneously on multiple
processors or computing nodes [7,8]. Parallel
computing can significantly speed up the execution
of tasks that can be divided into multiple
independent parts. The importance of parallel
computing in ML is due to the growth in the size
and complexity of datasets used in ML
applications. Large datasets can require significant
computational resources to train ML algorithms.
Parallel computing can help to speed up the
training process and make it more accessible [9].

Parallel learning in machine learning is an
urgent task. There are various approaches to
parallelization of machine learning methods, for
example, in [10-12] the authors developed a
parallel algorithm for the linear regression method.
In [10,12], an implementation was given for
multithreaded systems, and in [11] for systems with
distributed memory. A similar problem, but for the
method of support vectors for regression, can be
seen in [13,14]. In these papers, the authors used

https://doi.org/10.26577/jpcsit2023v1i4a2
https://orcid.org/0000-0001-5663-2267
https://orcid.org/0009-0003-6052-8341
mailto:nuryslam.qassymbek@gmail.com

14

Comparative study of parallel algorithms for machine learning methods

the MPI (Message Passing Interface) standard for
parallelization. And in the works [15,16] one can
see the use of the same standard, but for the
Random Forest method. These works show the
relevance of the problem under consideration.

In this paper, we present a parallel linear
regression training algorithm that uses MPI to
parallelize the matrix operations of the normal
function. Our algorithm can significantly speed up
the training of linear regression for large datasets.

2 Linear regression

Linear regression stands out as one of the most
extensively utilized machine learning methods,
employed for predicting continuous values using a
dataset that comprises pairs of independent and
dependent variables. Linear regression has many
applications in various fields, including:

• Demand forecasting
• Price forecasting
• Sports outcome forecasting
• Image classification
• Natural language processing
In traditional linear regression, the dependent

variable 𝑦𝑦𝑦𝑦 is assumed to be the linear sum of the
independent variables 𝑥𝑥𝑥𝑥1, 𝑥𝑥𝑥𝑥2, … , 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛:

𝑦𝑦𝑦𝑦 = 𝜃𝜃𝜃𝜃0 + 𝜃𝜃𝜃𝜃1𝑥𝑥𝑥𝑥1 + 𝜃𝜃𝜃𝜃2𝑥𝑥𝑥𝑥2 + ⋯+ 𝜃𝜃𝜃𝜃𝑛𝑛𝑛𝑛𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛.

The constants 𝜃𝜃𝜃𝜃0,𝜃𝜃𝜃𝜃1, … ,𝜃𝜃𝜃𝜃𝑛𝑛𝑛𝑛 are called
regression weights. They are calculated in such a
way as to minimize the loss function, often
formulated as the sum of the squares of the
differences between the predicted and actual values
of the dependent variable:

∑ (𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 − (𝜃𝜃𝜃𝜃0 + 𝜃𝜃𝜃𝜃1𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 + 𝜃𝜃𝜃𝜃2𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖2 + ⋯+ 𝜃𝜃𝜃𝜃𝑛𝑛𝑛𝑛𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛))2𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1 .

This loss function is called the normal function.
A solution to the problem of minimizing the

normal function is offered by the least squares
method. This method includes the following steps:

1. Calculate the matrix 𝑋𝑋𝑋𝑋, consisting of the
observations of the independent variables.

2. Calculate the vector 𝑦𝑦𝑦𝑦, containing the actual
values of the dependent variable.

3. Calculate the matrix 𝑊𝑊𝑊𝑊, the inverse of the
matrix 𝑋𝑋𝑋𝑋𝑇𝑇𝑇𝑇𝑋𝑋𝑋𝑋.

4. The regression weights are determined as
follows:

𝜃𝜃𝜃𝜃 = 𝑊𝑊𝑊𝑊𝑋𝑋𝑋𝑋𝑇𝑇𝑇𝑇𝑦𝑦𝑦𝑦. (1)

3 Random forest

Random Forest serves as an ensemble learning
method designed for both classification and
regression purposes. It includes many decision
trees, each trained on separate subsets of the data
set.

Leo Breiman introduced the random forest
method in 2001, and since then it has become one
of the widely used machine learning approaches,
finding applications in various fields such as image
recognition, natural language processing and
prediction.

The learning algorithm for a random forest
comprises the following steps:

1. Initialize a set of decision trees 𝑇𝑇𝑇𝑇.
2. For each decision tree:
o Compute a random subset of size 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠 from

the original dataset.
o Train the decision tree on the subset.
3. Make a prediction by voting the decision

trees.
On step 2, the random forest algorithm uses

bagging. Bagging is an ensemble learning method
that trains a multitude of models on different
subsets of the original dataset. This helps to reduce
overfitting, which can occur when training a single
model on the entire dataset.

On step 3, the random forest algorithm uses
voting. Voting is a method that combines the
predictions of multiple models to obtain a more
accurate predictive result.

4 Parallel architecture

Parallel algorithms of machine learning
methods were developed as part of the program.
There are various parallel architectures. Modern
cluster and supercomputer systems are built on a
hybrid architecture, i.e. the system consists of
computing nodes with shared memory, and each
node can have a multicore CPU and GPU as an
accelerator. For multicomputer systems and
systems with a hybrid architecture, the MPI
standard is usually used in parallel programs. MPI
(Message Passing Interface) is a programming
interface (API) for message passing that allows
processes to exchange messages in a parallel
computing system. MPI is the most widely used

15

N.M. Kassymbek, A.S. Rakhimzhanova

standard for data exchange interfaces in parallel
programming, and there are implementations for a
large number of platforms. In this work, this
standard was used for the parallel implementation
of the methods under consideration.

There are two main approaches to
implementing parallel algorithms: model
parallelism and data parallelism. In the first
approach, calculations are performed in parallel
within the model. In the second approach, the
data is divided into computing nodes, training
takes place in parallel, and when forecasting,
each node issues its own forecast, and the final
decision can be made based on these forecasts
by choosing the majority or calculating the
average value.

A parallel linear regression algorithm has been
developed. In this method, the weights can be
found using gradient descent, and in some cases
using the normal equation (1) by the analytical
method. The equation consists of matrix
multiplication, finding the inverse matrix and
multiplying the matrix by a vector. These
operations were parallelized using the MPI

standard for shared memory systems. The Gauss-
Jordan method was used to find the inverse matrix
(𝑊𝑊𝑊𝑊). The method itself is not well-parallelized, as
the calculations have explicit dependencies.
Therefore, a pipelined parallel algorithm was
developed. To balance the computations, the matrix
was distributed to the processes in a cyclic way.
Matrix multiplication (𝑋𝑋𝑋𝑋𝑇𝑇𝑇𝑇𝑋𝑋𝑋𝑋 and 𝑊𝑊𝑊𝑊𝑋𝑋𝑋𝑋𝑇𝑇𝑇𝑇) and matrix-
vector multiplication (result with 𝑦𝑦𝑦𝑦) were
implemented with row-wise distribution of the
matrix.

The most convenient method for parallelization
on cluster systems is the Random Forest method.
The method builds N decision trees on random
subsamples. When forecasting, the average value
from each tree is found. With a parallel
implementation, N trees are divided into NP
parallel processes and each process builds its
decision trees independently of each other. As
shown in Figure 1, independent decision trees are
constructed. To do this, the dataset is sent to all
processes using the MPI_Bcast functions, and the
mean value, the solution to the problem, is
combined using the MPI_Reduce functions.

Figure 1 – Parallel Random Forest algorithm

5 Experimental results

Experiments were conducted on a dataset of the
oil displacement problem. The characteristics of the
dataset and the results obtained for sequential
algorithms can be found in the work [17]. Tests of
the developed parallel algorithms were conducted
on a computer with an Intel® Core™ i7-10750H
processor with 6 cores and 12 threads.

The results of parallelization of the Linear
regression method can be seen in Table 1 and the

results of parallelization of random forest can be
seen in Table 2. The tests of the linear regression
program were conducted on a dataset with a sample
size of up to 2,400,000, and the tests of random
forest up to 400,000. The random forest method,
although more accurate, is computationally
expensive. Therefore, the tests were conducted on a
significantly smaller dataset size.

In all tables, the first column means the number
of parallel processes, the first row means the
sample size (the number of rows of the matrix X),

16

Comparative study of parallel algorithms for machine learning methods

and each subsequent row is the elapsed time of the
parallel program's execution. Based on the
information presented in the tables, you can see

that both algorithms gave acceleration relative to
the sequential program. The acceleration of
programs can be seen in Figure 2.

Table 1 – Execution time of the parallel LR algorithm, sec

NP\m 600000 1200000 2400000

1 4,22 7,52 14,93

2 1,61 4,05 8,44

4 1,29 3,18 6,18

8 1,24 2,83 5,74

Table 2 – Execution time of the parallel RF algorithm, sec

NP\m 100000 200000 400000

1 2,25 4,77 11,3

2 1,2 2,5 5,46

4 0,68 1,36 2,96

8 0,59 1,02 1,91

Figure 2 – Acceleration of LR and RF algorithms

17

N.M. Kassymbek, A.S. Rakhimzhanova

From the graph, it can be seen that in linear
regression, the acceleration decreases with
increasing dataset size, while in random forest, the
acceleration increases. Additionally, in random
forest, a better acceleration was obtained in all
cases. As mentioned earlier, random forest is the
best machine learning method for parallelization. In
linear regression, there is still a data dependency in
the calculations, and the amount of communication
is higher than in random forest. The increase in
acceleration with increasing dataset size suggests
that the parallel program could give even greater
acceleration on even more data. This assumption
requires experimental confirmation, which will be
carried out in the future.

These experiments show that for a large dataset
size on one processor, it is better to use the linear
regression method, but if you have access to a
system with multiple or more processors, in these
cases it is better to use random forest.

6 Conclusion

In this work, methods of parallel data
processing for machine learning were considered.
Two of the most common machine learning
methods were considered: linear regression and
random forest. Parallel algorithms based on the
MPI interface were developed for each method.

The experimental outcomes revealed that
both methods give acceleration compared to the

sequential algorithm. However, the acceleration
in the case of random forest was significantly
higher than in the case of linear regression. This
is because random forest is a more
computationally efficient method than linear
regression. Hence, one can infer that random
forest is the best machine learning method for
parallel data processing. This conclusion is
supported by the results of the experiments
conducted in this work.

In addition, the experiments showed that the
acceleration of linear regression decreases with
increasing sample size, while the acceleration of
random forest increases. This is because there is a
data dependency in the calculations in linear
regression, and the amount of communication is
higher than in random forest.

Overall, the experimental findings indicate that
employing parallel algorithms for machine learning
can markedly expedite the training of models when
dealing with extensive datasets. Random forest is
the most efficient method for parallel data
processing, as it is more computationally efficient
and has higher scalability.

Acknowledgments

This research was funded by the Science
Committee of the Ministry of Science and Higher
Education of the Republic of Kazakhstan, grant
number BR18574136.

References

1. Murphy, Kevin P.. Machine learning : a probabilistic perspective. Cambridge, Mass. [u.a.]: MIT Press, 2013.
2. Hastie, Trevor, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning. Springer Series in

Statistics. Springer New York, 2009. https://doi.org/10.1007/978-0-387-84858-7.
3. Stock, James H., and Motohiro Yogo. “Testing for Weak Instruments in Linear IV Regression.” Identification and

Inference for Econometric Models. Cambridge University Press, June 17, (2005). https://doi.org/10.1017/cbo9780511614491.006.
4. Weisberg, Sanford. “Applied Linear Regression.” Wiley Series in Probability and Statistics. Wiley, January 14, (2005).

https://doi.org/10.1002/0471704091.
5. Tin Kam Ho. “Random Decision Forests.” Proceedings of 3rd International Conference on Document Analysis and

Recognition. IEEE Comput. Soc. Press, n.d. https://doi.org/10.1109/icdar.1995.598994.
6. Breiman, L. “Random Forests.” Machine Learning 45, 5–32 (2001). https://doi.org/10.1023/A:1010933404324
7. Jin, Haoqiang, Dennis Jespersen, Piyush Mehrotra, Rupak Biswas, Lei Huang, and Barbara Chapman. “High

Performance Computing Using MPI and OpenMP on Multi-Core Parallel Systems.” Parallel Computing. Elsevier BV, September
(2011). https://doi.org/10.1016/j.parco.2011.02.002.

8. Dalcin, Lisandro D., Rodrigo R. Paz, Pablo A. Kler, and Alejandro Cosimo. “Parallel Distributed Computing Using
Python.” Advances in Water Resources. Elsevier BV, September (2011). https://doi.org/10.1016/j.advwatres.2011.04.013.

9. Kamp, Michael, Mario Boley, Olana Missura, and Thomas Gärtner. “Effective Parallelisation for Machine Learning.”
arXiv, (2018). https://doi.org/10.48550/ARXIV.1810.03530.

10. Shashank, Ojha and Kylee, Santos. Parallelizing Gradient Descent on Different Architectures. https://shashank-
ojha.github.io/ParallelGradientDescent/ (accessed December 10, 2023)

11. Maleki, Saeed, Madanlal Musuvathi, and Todd Mytkowicz. “Parallel Stochastic Gradient Descent with Sound
Combiners.” arXiv, (2017). https://doi.org/10.48550/ARXIV.1705.08030.

18

Comparative study of parallel algorithms for machine learning methods

12. Mochurad, Lesia. “Optimization of Regression Analysis by Conducting Parallel Calculations.” COLINS-2021: 5th
International Conference on Computational Linguistics and Intelligent Systems, April 22–23, 2021, Kharkiv, Ukraine

13. Lin, Chieh-Yen, Cheng-Hao Tsai, Ching-Pei Lee, and Chih-Jen Lin. “Large-Scale Logistic Regression and Linear
Support Vector Machines Using Spark.” 2014 IEEE International Conference on Big Data (Big Data). IEEE, October 2014.
https://doi.org/10.1109/bigdata.2014.7004269.

14. Woodsend, K., and Gondzio, J. “Hybrid MPI/OpenMP parallel linear support vector machine training.” Journal of
Machine Learning Research, 10, Article 1937-1953.

15. Mitchell, Lawrence, Terence M. Sloan, Muriel Mewissen, Peter Ghazal, Thorsten Forster, Michal Piotrowski, and Arthur
S. Trew. “A Parallel Random Forest Classifier for R.” Proceedings of the Second International Workshop on Emerging
Computational Methods for the Life Sciences. ACM, June 8, 2011. https://doi.org/10.1145/1996023.1996024.

16. Jie Hu. Parallelized Random Forests Learning, CSE 633 Course Project.
https://cse.buffalo.edu/faculty/miller/Courses/CSE633/Hu-Fall-2012-CSE633.pdf (accessed December 10, 2023)

17. Kenzhebek, Yerzhan, Timur Imankulov, Darkhan Akhmed-Zaki, and Beimbet Daribayev. “Implementation of
Regression Algorithms for Oil Recovery Prediction.” Eastern-European Journal of Enterprise Technologies. Private Company
Technology Center, April 30, 2022. https://doi.org/10.15587/1729-4061.2022.253886.

