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Abstract. In the modern world, as the amount of data used in machine learning is constantly growing, the task 
of accelerating the training of models on large datasets becomes relevant. To solve this problem, methods of 
parallel data processing are used. This paper discusses methods of parallel data processing for machine learning. 
Linear regression and random forest are considered as machine learning methods. Parallel algorithms based on the 
MPI interface were developed for each method. The results of the experiments showed that both methods give 
acceleration compared to the sequential algorithm. However, the acceleration in the case of random forest was 
significantly higher than in the case of linear regression. This is because random forest is a more computationally
efficient method than linear regression. Therefore, it can be concluded that Random Forest is the most effective 
machine learning approach for parallel data processing. This statement is confirmed by the results of experiments 
conducted in this work. Overall, the experimental results show that the use of parallel algorithms in machine 
learning can significantly speed up model training when working with large data sets. Random forest is the most 
efficient method for parallel data processing, as it is more computationally efficient and has higher scalability.
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1 Introduction

Machine learning (ML) is a branch of artificial 
intelligence dedicated to creating algorithms that 
can learn from data without the need for explicit 
programming [1,2]. These algorithms find 
applications in various fields such as image 
recognition, natural language processing, and 
predictive analysis.

One of the most widely used ML methods is 
linear regression [3]. Linear regression is employed 
to forecast continuous values using a dataset 
containing pairs of independent and dependent 
variables [4]. Traditional linear regression training 
operates sequentially, and for substantial datasets, 
it can be computationally intensive. This is 
attributed to the quadratic nature of the matrix 
operation involved in the normal function, utilized 
to calculate the weights for linear regression, which 
scales with the number of observations in the 
dataset.

The random forest serves as an ensemble 
machine learning method applied to both 
classification and regression tasks. It involves 
numerous decision trees trained on diverse subsets 
of the dataset [5,6]. Conventional random forest 
training is likewise a sequential procedure, and its 

computational demands can be high, particularly 
for sizable datasets. This is due to the necessity of 
computing numerous data splits for each decision 
tree.

Parallel programming is a software 
development methodology that allows multiple 
tasks to be run simultaneously on multiple 
processors or computing nodes [7,8]. Parallel 
computing can significantly speed up the execution 
of tasks that can be divided into multiple 
independent parts. The importance of parallel 
computing in ML is due to the growth in the size 
and complexity of datasets used in ML 
applications. Large datasets can require significant 
computational resources to train ML algorithms. 
Parallel computing can help to speed up the 
training process and make it more accessible [9].

Parallel learning in machine learning is an 
urgent task. There are various approaches to 
parallelization of machine learning methods, for 
example, in [10-12] the authors developed a 
parallel algorithm for the linear regression method. 
In [10,12], an implementation was given for 
multithreaded systems, and in [11] for systems with 
distributed memory. A similar problem, but for the 
method of support vectors for regression, can be 
seen in [13,14]. In these papers, the authors used 
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the MPI (Message Passing Interface) standard for 
parallelization. And in the works [15,16] one can 
see the use of the same standard, but for the 
Random Forest method. These works show the 
relevance of the problem under consideration.

In this paper, we present a parallel linear 
regression training algorithm that uses MPI to 
parallelize the matrix operations of the normal 
function. Our algorithm can significantly speed up 
the training of linear regression for large datasets.

2 Linear regression

Linear regression stands out as one of the most 
extensively utilized machine learning methods, 
employed for predicting continuous values using a 
dataset that comprises pairs of independent and 
dependent variables. Linear regression has many 
applications in various fields, including:

• Demand forecasting
• Price forecasting
• Sports outcome forecasting
• Image classification
• Natural language processing
In traditional linear regression, the dependent 

variable 𝑦𝑦𝑦𝑦 is assumed to be the linear sum of the 
independent variables 𝑥𝑥𝑥𝑥1, 𝑥𝑥𝑥𝑥2, … , 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛:

𝑦𝑦𝑦𝑦 = 𝜃𝜃𝜃𝜃0 + 𝜃𝜃𝜃𝜃1𝑥𝑥𝑥𝑥1 + 𝜃𝜃𝜃𝜃2𝑥𝑥𝑥𝑥2 + ⋯+ 𝜃𝜃𝜃𝜃𝑛𝑛𝑛𝑛𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛.

The constants 𝜃𝜃𝜃𝜃0,𝜃𝜃𝜃𝜃1, … ,𝜃𝜃𝜃𝜃𝑛𝑛𝑛𝑛 are called 
regression weights. They are calculated in such a 
way as to minimize the loss function, often 
formulated as the sum of the squares of the 
differences between the predicted and actual values 
of the dependent variable:

∑ (𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 − (𝜃𝜃𝜃𝜃0 + 𝜃𝜃𝜃𝜃1𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 + 𝜃𝜃𝜃𝜃2𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖2 + ⋯+ 𝜃𝜃𝜃𝜃𝑛𝑛𝑛𝑛𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛))2𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1 .

This loss function is called the normal function.
A solution to the problem of minimizing the 

normal function is offered by the least squares 
method. This method includes the following steps:

1. Calculate the matrix 𝑋𝑋𝑋𝑋, consisting of the 
observations of the independent variables.

2. Calculate the vector 𝑦𝑦𝑦𝑦, containing the actual 
values of the dependent variable.

3. Calculate the matrix 𝑊𝑊𝑊𝑊, the inverse of the 
matrix 𝑋𝑋𝑋𝑋𝑇𝑇𝑇𝑇𝑋𝑋𝑋𝑋.

4. The regression weights are determined as 
follows:

𝜃𝜃𝜃𝜃 = 𝑊𝑊𝑊𝑊𝑋𝑋𝑋𝑋𝑇𝑇𝑇𝑇𝑦𝑦𝑦𝑦.                         (1)

3 Random forest

Random Forest serves as an ensemble learning 
method designed for both classification and 
regression purposes. It includes many decision 
trees, each trained on separate subsets of the data 
set.

Leo Breiman introduced the random forest 
method in 2001, and since then it has become one 
of the widely used machine learning approaches, 
finding applications in various fields such as image 
recognition, natural language processing and 
prediction.

The learning algorithm for a random forest 
comprises the following steps:

1. Initialize a set of decision trees 𝑇𝑇𝑇𝑇.
2. For each decision tree:
o Compute a random subset of size 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠 from 

the original dataset.
o Train the decision tree on the subset.
3. Make a prediction by voting the decision 

trees.
On step 2, the random forest algorithm uses 

bagging. Bagging is an ensemble learning method 
that trains a multitude of models on different 
subsets of the original dataset. This helps to reduce 
overfitting, which can occur when training a single 
model on the entire dataset.

On step 3, the random forest algorithm uses 
voting. Voting is a method that combines the 
predictions of multiple models to obtain a more 
accurate predictive result.

4 Parallel architecture

Parallel algorithms of machine learning 
methods were developed as part of the program. 
There are various parallel architectures. Modern 
cluster and supercomputer systems are built on a 
hybrid architecture, i.e. the system consists of 
computing nodes with shared memory, and each 
node can have a multicore CPU and GPU as an 
accelerator. For multicomputer systems and 
systems with a hybrid architecture, the MPI 
standard is usually used in parallel programs. MPI 
(Message Passing Interface) is a programming 
interface (API) for message passing that allows 
processes to exchange messages in a parallel 
computing system. MPI is the most widely used 
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standard for data exchange interfaces in parallel 
programming, and there are implementations for a 
large number of platforms. In this work, this 
standard was used for the parallel implementation 
of the methods under consideration.

There are two main approaches to 
implementing parallel algorithms: model 
parallelism and data parallelism. In the first 
approach, calculations are performed in parallel 
within the model. In the second approach, the 
data is divided into computing nodes, training 
takes place in parallel, and when forecasting, 
each node issues its own forecast, and the final 
decision can be made based on these forecasts 
by choosing the majority or calculating the 
average value.

A parallel linear regression algorithm has been 
developed. In this method, the weights can be 
found using gradient descent, and in some cases 
using the normal equation (1) by the analytical 
method. The equation consists of matrix 
multiplication, finding the inverse matrix and 
multiplying the matrix by a vector. These 
operations were parallelized using the MPI 

standard for shared memory systems. The Gauss-
Jordan method was used to find the inverse matrix
(𝑊𝑊𝑊𝑊). The method itself is not well-parallelized, as 
the calculations have explicit dependencies. 
Therefore, a pipelined parallel algorithm was 
developed. To balance the computations, the matrix 
was distributed to the processes in a cyclic way. 
Matrix multiplication (𝑋𝑋𝑋𝑋𝑇𝑇𝑇𝑇𝑋𝑋𝑋𝑋 and 𝑊𝑊𝑊𝑊𝑋𝑋𝑋𝑋𝑇𝑇𝑇𝑇) and matrix-
vector multiplication (result with 𝑦𝑦𝑦𝑦) were
implemented with row-wise distribution of the 
matrix.

The most convenient method for parallelization 
on cluster systems is the Random Forest method. 
The method builds N decision trees on random 
subsamples. When forecasting, the average value 
from each tree is found. With a parallel 
implementation, N trees are divided into NP 
parallel processes and each process builds its 
decision trees independently of each other. As 
shown in Figure 1, independent decision trees are 
constructed. To do this, the dataset is sent to all 
processes using the MPI_Bcast functions, and the 
mean value, the solution to the problem, is 
combined using the MPI_Reduce functions.

Figure 1 – Parallel Random Forest algorithm

5 Experimental results

Experiments were conducted on a dataset of the 
oil displacement problem. The characteristics of the 
dataset and the results obtained for sequential 
algorithms can be found in the work [17]. Tests of 
the developed parallel algorithms were conducted 
on a computer with an Intel® Core™ i7-10750H 
processor with 6 cores and 12 threads.

The results of parallelization of the Linear 
regression method can be seen in Table 1 and the 

results of parallelization of random forest can be 
seen in Table 2. The tests of the linear regression 
program were conducted on a dataset with a sample 
size of up to 2,400,000, and the tests of random 
forest up to 400,000. The random forest method, 
although more accurate, is computationally 
expensive. Therefore, the tests were conducted on a 
significantly smaller dataset size.

In all tables, the first column means the number 
of parallel processes, the first row means the 
sample size (the number of rows of the matrix X), 
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and each subsequent row is the elapsed time of the 
parallel program's execution. Based on the 
information presented in the tables, you can see 

that both algorithms gave acceleration relative to 
the sequential program. The acceleration of 
programs can be seen in Figure 2.

Table 1 – Execution time of the parallel LR algorithm, sec

NP\m 600000 1200000 2400000

1 4,22 7,52 14,93

2 1,61 4,05 8,44

4 1,29 3,18 6,18

8 1,24 2,83 5,74

Table 2 – Execution time of the parallel RF algorithm, sec

NP\m 100000 200000 400000

1 2,25 4,77 11,3

2 1,2 2,5 5,46

4 0,68 1,36 2,96

8 0,59 1,02 1,91

Figure 2 – Acceleration of LR and RF algorithms
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From the graph, it can be seen that in linear 
regression, the acceleration decreases with 
increasing dataset size, while in random forest, the 
acceleration increases. Additionally, in random 
forest, a better acceleration was obtained in all 
cases. As mentioned earlier, random forest is the 
best machine learning method for parallelization. In 
linear regression, there is still a data dependency in 
the calculations, and the amount of communication 
is higher than in random forest. The increase in 
acceleration with increasing dataset size suggests 
that the parallel program could give even greater 
acceleration on even more data. This assumption 
requires experimental confirmation, which will be 
carried out in the future.

These experiments show that for a large dataset 
size on one processor, it is better to use the linear 
regression method, but if you have access to a 
system with multiple or more processors, in these 
cases it is better to use random forest.

6 Conclusion

In this work, methods of parallel data 
processing for machine learning were considered. 
Two of the most common machine learning 
methods were considered: linear regression and 
random forest. Parallel algorithms based on the 
MPI interface were developed for each method.

The experimental outcomes revealed that 
both methods give acceleration compared to the 

sequential algorithm. However, the acceleration 
in the case of random forest was significantly 
higher than in the case of linear regression. This 
is because random forest is a more 
computationally efficient method than linear 
regression. Hence, one can infer that random 
forest is the best machine learning method for 
parallel data processing. This conclusion is 
supported by the results of the experiments 
conducted in this work.

In addition, the experiments showed that the 
acceleration of linear regression decreases with 
increasing sample size, while the acceleration of 
random forest increases. This is because there is a 
data dependency in the calculations in linear
regression, and the amount of communication is 
higher than in random forest.

Overall, the experimental findings indicate that 
employing parallel algorithms for machine learning 
can markedly expedite the training of models when 
dealing with extensive datasets. Random forest is 
the most efficient method for parallel data 
processing, as it is more computationally efficient 
and has higher scalability.
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