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Abstract. The paper analyzes the principles of Haar cascade classifier and FaceNET machine learn-
ing simulation program for biometric identification. As an experiment, a recognition system was created 
that will allow human face recognition, which was developed in the Python programming language. 
Some libraries covered in the research process include numpy, OpenCV, pip, matplotlib, virtualenv and 
pickle. The Haar cascade classifier is used to detect objects in images and videos. For the process of 
generating a facial signature, the two programs used the FaceNET machine learning model, which uses 
convolutional neural networks in the process of extracting features from facial images and conducting a 
comparative analysis of them between the identification data and those stored in the database. Due to 
this, FaceNET identifies faces in images with high accuracy and security, which is useful for use in access 
control systems, automation of visitor accounting processes and other applications where facial recogni-
tion is necessary. The created system will provide an opportunity to recognize unique facial features, 
store them and link them with the user’s documentary information.
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1. Introduction

Biometric methods, while being an effective 
means of protecting information, have risks 
associated with their use, such as imperfect scanning 
technologies, the possibility of theft and tampering 
of biometric information or photos, and many others 
[1, 2].

To solve the security problem and improve the 
performance of biometric methods, more and more 
researchers are applying neural networks.

The proposed architecture is based on 
convolutional layers, as convolutional neural 
networks have high accuracy and robustness to 
various distortions when applied in the field of facial 
biometrics. As an example, a system is developed 
to perform human face recognition. The created 
program has a small code size in Python language. 
The developed system uses FaceNET machine 
learning model and Haar cascade classifier, which 
are based on deep neural networks that allow 
face detection and recognition. The application 
of convolutional neural networks is necessary to 
extract facial features from images. These features 
are high dimensional vectors that describe the 

unique characteristics of each face and allow for 
comparative analysis of two faces to determine if 
they belong to the same person.

The model utilizes a training method called 
“one-shot learning”, which allows training with 
the smallest number of images, i.e., one image 
is sufficient. This model can be implemented 
using small computational resources. The Python 
language and some number of defined programs 
are used to implement this program. These 
include numpy, OpenCV, Jupyper Notebook, pip, 
matplotlib, virtualenv, and pickle. With a number 
of specific operations performed, virtualenv must 
be installed and run, as this program will allow 
you to create a virtual environment for OpenCV. 
Next, a virtual environment, named as OpenCV, 
was created and activated for use. Activation 
is performed by a bat-file located in the Scripts 
directory of the created OpenCV virtual 
environment. The numpy program was installed 
next, followed by the OpenCV library itself 
and the Jupyter Notebook program. The library 
provides image-processing capabilities, and the 
program is an interactive notepad that allows you 
to work with many runtime environments.
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2. Applications of the Cascade Haar Classifier

The input of the FaceNET machine-learning 
model is faces of size 160*160 pixels. The FaceNET 
system is capable of outputting 128 values, which 
are individual indicators of features unique to that 
face. In the case of an available photograph of a face 
in a different perspective, these values may differ, 
but not significantly, giving the same selection of 
outputs with almost identical numbers. The resulting 
128 values are a face «signature» that is unique 
to each face. The input photo has not only a face 
image, but may also contain other objects and faces, 
or will have no face at all. Therefore, a procedure 
is needed to detect faces in the images, which leads 

to the need for a cascaded Haar classifier. Given an 
image as input, the classifier allows to determine 
the presence of faces, the location of a face and 
the number of located faces. The Haar classifier 
performs calculations by applying the so-called Haar 
functions, which are calculations for contiguous 
rectangular regions at a particular location in the 
detection window. Also included in the calculation 
process is summing the pixel intensities in 
each region and calculating the distinguishing 
characteristics between the sums. Currently, over 
6000 features are correlated with the image and 
based on the correlation between the image and the 
features. Figure 1 shows an example of a general 
representation of Haar classifier training.

Figure 1 – A general representation of the training of the Haar classifier [3]

The two-step process results in the creation of 
two program codes for each step. The first program 
is designed only for the creation of a database of 
face signatures, while the second will allow the 
recognition of all faces. The first stage involves the 
collection of face images, followed by the creation of 
a database based on the production of corresponding 
“face signatures”. The goal of the first program is to 
create a database consisting of signatures of the faces 
we want to recognize. Having only one photograph 
of each person is sufficient. By having more than 
one photo of each person available, the accuracy can 
be improved. The images are processed by a Haar 
cascade classifier, followed by FaceNET, which 
will produce «face signatures» that are stored in the 
database. The number of face signatures required 
directly depends on the number of face images of 

different people. The size of 160*160 pixels is used, 
as this size is the optimal size for model training. 
A database can be stored in different types of file 
formats and in this case, the database is saved in 
picklefile format, in particular, this database is saved 
as data.pkl. Figure 2 shows a schematic of signature 
generation based on the input stock image [4].

The second step involves the code generation 
process and consists of capturing an image from 
the workstation camera, directing the input image 
from the camera to the Haar cascade classifier, 
feeding the transformed image to the FaceNET 
model to generate a signature unique to that person. 
This signature of the face is compared with already 
existing records in the database. Figure 3 shows the 
scheme of face signature generation based on the 
input image from the camera. 
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Figure 2 – Scheme of face signature formation on the basis of input stock image

Figure 3 – Scheme of face signature generation based on the input image from the camera

Frobenius norm is applied to compare face 
signatures. In this case, each signature has 128 
numerical values and can be represented as a vector 
with 128 numerical values. The NumPy library has 
many other functions for working with matrices 
and their norms. This library provides possibility 
to compute Frobenius norms for several matrices 
simultaneously. When applying the FaceNET model, 
a vector of 128 numerical values is formed, which 
provides a description of the unique characteristics 
of a given face in the image, and the values of the 
vector can have both positive and negative values, 
and their interpretation in most cases does not 
make physical sense. The process of generating 128 
values when applying the FaceNET model consists 
of 3 steps:

- The face image is fed to the input of the 
FaceNET machine learning model;

- FaceNET machine learning model performs 
image processing and returns a vector of numerical 
values of length 128;

- The obtained vector is a «face signature» for 
the person whose image was fed to the input of the 
FaceNET machine-learning model.

Figure 4 shows a fragment of the generated 128 
numerical values of the «face signature» [5].

The values in the database are labeled as 
«signatures» for simplicity, and the values obtained 
during the processing of the camera image are 
named as «value» and the norm value is N. The 
following method is applied for calculation as given 
in formula 1:

,(1)

where N is the Frobenius norm.
This number is the norm that is applied to find 

which of the face «signatures» of the database is 
similar with the «value». And the calculations go 
accordingly with the arrangement of values, i.e. 
the first value of «signature» with the first value of 
«value». Based on these calculations it is possible 
to determine the smallest value of the norm, which 
is the correspondence for the signature from the 
database with the signature from the camera input 
image.
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Figure 4 – Fragment of 128 numeric values of «face signature»

Features the first program that allows you to 
create a database from stock images of faces. This 
program is 1Signature.ipynb. Initially, a directory 
with images of faces that are included in the 
database is needed. It called «photosforfacenet». It 
contains an image without a face to understand that 
if there is no face, the value «unknown» should be 
output. The number of face images depends on the 
computing resources of the workstation. The face 
image should be in the format “person’s name”.
png, because during face recognition the name of 
the person is taken from the name of the image 
peculiar to this person. Running the program 

is accompanied by code to load libraries such 
as os, PIL, numpy, matplotlib, pickle, cv2, and 
keras_models. Libraries are necessary to support 
the codes in a program. The os library provides 
functionality in working with the operating system 
to retrieve information about files in a directory. 
PIL and OpenCV are Python image libraries used 
for image processing in Python. The OpenCV 
library is needed to retrieve the image from the 
camera. The next step is to load the Haar cascade 
classifier and FaceNET. Figure 5 shows the code 
responsible for loading the Haar cascade classifier 
and FaceNET [6].
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Figure 5 – Haar and FaceNET cascading classifi er download code

The haarcascade_frontalface_default.xml fi le 
contains a pre-trained Haar classifi er for detecting 
faces in the frontal position. This fi le is downloaded 
from github.com and should be saved in the 
directory with all fi les. All program fi les are located 
in C:\Users\Admin\Documents\machinelearn\Face-
Recognition-with-FaceNET-main. In addition, you 
need to download the fi le facenet_keras.h5 also via 
github.com. After all the necessary models have been 
loaded, it is necessary to proceed to the main code. 
The directory with photos is assigned a variable, 
which is specifi ed as an empty database. Next, a for 
loop is used to repeat iterations equal to the number 
of fi les in the photosforfacenet directory. For each 
iteration a name is required, and it is taken from 
the name of the fi le located in the photosforfacenet 
directory. The above processes used the OpenCV
library, but the image codes that are in the code 

apply the PIL format. The image layers in OpenCV
are composed of BGR and PIL is composed of RGB. 
For this reason, the image is converted, turned 
into an array and a cropping process is performed 
based on x1, y1, x2 and y2. In the end, only the face 
image should remain. The name of the converted 
image is gbr. The face is then converted to an array, 
followed by resizing the face 160*160 and another 
conversion to an array. The image is then transmitted 
to FaceNET. As a result, a signature is created and 
stored in a «database» dictionary. Figures 6 and 7 
show code fragments with detailed explanation of 
the code lines.

Next, you need to save this database with face 
signatures from this photosforfacenet directory to a 
fi le named data.pkl. This fi le is saved in the directory 
where the other fi les are located. For this purpose, 
the code shown in Figure 8 is applied.

Figure 6 – The fi rst part of the code fragment of the 1Signature.ipynb program with comments
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Figure 7 – The second part of the code fragment of the 1Signature.ipynb program with comments

Figure 8 – Code for saving the data.pkl file

The next step is to create a second program 
identical to the first one, but with some changes. In 
the second program, an algorithm for recognizing a 
face taken from a camera image is developed. The 
number of libraries used is the same, code for loading 
the Haar cascade classifier and FaceNET is added. 
The next step is to add code to read the database 
from the data.pkl file. The standard pickle library 
has been applied for the file loading processes. 
Since the image is taken from the workstation 
camera, it is necessary to define the camera in the 
code. The OpenCV library and the variable cap = 
cv2.VideoCapture(0), where 0 is the camera used. 
By default, the built-in camera is labeled with 
the number 0. If there is another camera, you can 
connect another camera by changing the value of 0 
to another. Figure 9 shows the first part of the main 
code of the second program [7]. 

This code runs until the Esc key is pressed to 
terminate the program. The initial step is to capture 
frames from the camera, then the next line of code 
is similar to the line of code from the previous 
program, which is responsible for loading the 
Haar cascade image for face detection. The face is 
detected, face location is determined, conversion 
to PIL format is done, face-cropping operation is 
performed and conversion to 160*160 pixels size 

is done. Figure 10 shows the second part of the 
second program [8].

To determine if the received signature from the 
camera matches the signature from the database, 
it is represented that the norm value between 
«value» and «signature» will be 100, thus the loop 
will iteratively read the signature in the «values» 
database equal to the number of signatures in the 
«signatures» database. The face identifier «identity» 
will be left blank. This face identifier is necessary 
for displaying on the video in the window. The value 
«key» in the code corresponds to the person’s name 
in the database dictionary, and in each iteration 
process, «key» and «value» will be read. The next 
line of code is responsible for calculating the norm, 
the difference between «value» and «signature» and 
its variable named as «dist». In case the value of dist 
is less than 100, it will be recorded as a possible 
match. «Key» will be written as «identity». The 
process will repeat until the second signature in the 
database and so on. This process will look through 
all the signatures in the database to find a better 
matching signature. When a matching signature is 
found, that is the shortest distance, «identity» will 
display the person’s face. The next step is to display 
a rectangle around the person’s face and their name 
[9].
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Figure 9 – The first part of the main code

Figure 10 – The second part of the program AitzhanovSerik.ipynb
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Figure 11 – Result of program execution

Final lines of code. The cv2.putText() function 
allows you to output text per video frame and 
takes a number of arguments. The frame of the 
video on which the text is output is labeled as 
gbr1, and the identity outputs the text in the frame. 
The cv2.rectangle() function allows you to output 
a rectangle per video frame. The cv2.imshow() 
function displays the current video frame on the 

screen. And the last function cv2.waitKey() waits 
for a keyboard key to be pressed and returns 
its code. If the Esc key is pressed, the loop is 
terminated. Figure 11 shows the result of executing 
this program [10].

3. Conclusion

The FaceNET model considered as an example 
is one of the most efficient and accurate models 
for face recognition based on deep learning. The 
capabilities of the model where a single photo taken 
by a camera is applied in the system are repeatedly 
considered. As the number of single face images 
increases, the accuracy rate increases. This study 
demonstrates the working principle of FaceNET 
model in practice using convolutional neural 
network technology to extract facial features and 
convert them into numerical vectors for comparison 
and identification of individuals by face.
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