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MASS-CONSERVING PHYSICS-INFORMED AUGMENTATION
AND FOURIER FEATURE NETWORKS FOR SMALL-DATA PREDICTION
OF MOLYBDENITE (MO,S) LEACHING KINETICS

Abstract. Molybdenum remains a strategic metal for advanced steels and catalysis, while environ-
mental and energy pressures are accelerating interest in hydrometallurgical leaching routes for molybde-
nite (MoS,). Predicting leaching kinetics is difficult because the process is highly nonlinear and strongly
influenced by reagent chemistry and gas—liquid conditions, yet experimental datasets in metallurgical
laboratories are often extremely small. This manuscript develops a hybrid, data-efficient machine-learn-
ing approach designed specifically for small-data settings. The method combines physics-informed data
augmentation that enforces strict mass conservation with a Fourier Feature Network intended to reduce
spectral bias and better capture sharp kinetic transitions. Using only six experimental measurements,
the resulting model achieves high predictive accuracy on held-out data (R* = 0.9793, MAE = 1.61%)
and maintains stable generalization without evidence of train—test divergence. The study concludes that
physically admissible augmentation coupled with Fourier-enriched representations can produce reliable
kinetic surrogates from minimal data, supporting in-silico screening and optimization of leaching condi-
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tions for process design and control.

Keywords: molybdenite leaching, hydrometallurgy, small data, physics-informed augmentation,
mass conservation, Fourier feature networks, spectral bias.

1. Introduction

Molybdenum is a strategically important metal
whose demand is sustained by high-temperature and
corrosion-resistant steels, petrochemical catalysts,
and a growing set of energy and functional
applications. In industrial practice, molybdenum is
obtained mainly from molybdenite (MoS,)
concentrates, and the conventional flowsheet has
historically relied on oxidative roasting to
MoOsfollowed by downstream refining [1].
However, the energy intensity of roasting and the
challenges of controlling sulfur-oxide emissions
have strengthened the case for hydrometallurgical
alternatives that target “low-emission” molybdenum
recovery through leaching-based routes [2].

Despite this motivation, a central difficulty is
that MoS,leaching kinetics are strongly nonlinear
and process specific. Oxidative dissolution can
couple surface reaction, diffusion through boundary
layers and evolving product films, and solution
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chemistry that may stabilize or remove molybdenum
species  via  precipitation,  adsorption, or
complexation. For instance, nitric-acid pressure
oxidative leaching exhibits pronounced sensitivities
to oxygen pressure, acid concentration, and
temperature, and reported regimes can shift as
reaction products form and transport constraints
evolve [3]. Similarly, oxidant-assisted leaching
(e.g., chlorate in chloride media) displays multi-
parameter dependence on reagent ratios, agitation,
and liquid-to-solid ratio while achieving very high
extraction only within constrained operating
windows [4]. Mechanical activation further
complicates the picture by altering surface area,
defect density, and even enabling solid-state
reactions that change subsequent aqueous leaching
pathways [5].

In parallel, machine learning (ML) has become
a practical complement to mechanistic modeling in
chemical engineering because flexible learners can
approximate high-dimensional, nonlinear mappings
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between operating conditions and performance
metrics at low evaluation cost. Recent perspectives
emphasize that, with modern computation and better
representations, ML can serve as a fast surrogate
where first-principles models are incomplete or
prohibitively expensive to solve repeatedly [6]. In
minerals processing and extractive metallurgy, ML
has similarly expanded from monitoring and soft
sensing into broader flowsheet and operational
analytics, with reviews documenting rapid adoption
across process stages and data modalities [7].

However, most high-capacity ML models are
implicitly “big data” methods: they tend to
generalize reliably only when trained on large,
diverse datasets. This assumption is frequently
violated in metallurgy. Leaching experiments are
costly and time-consuming; they are constrained by
analytical throughput and safety limits, and they
must contend with ore variability and run-to-run
heterogeneity. Consequently, datasets are often
sparse, noisy, and statistically underpowered. The
broader “small data” challenge has been highlighted
across scientific ML, including in materials science,
where limited labeled data can make model selection
brittle and uncertainty high unless additional
structure or priors are leveraged [8]. Data-efficient
experimental strategies such as active learning help,
but they still operate under severe data scarcity
typical of laboratory and pilot studies [9].

A common response to small datasets is
synthetic data augmentation. In many domains,
oversampling methods such as SMOTE and deep
generative models such as GANs are used to enrich
training sets and reduce overfitting [10,11]. Yet for
physically governed chemical systems, naive
synthetic samples can be actively harmful: they may
violate conservation of mass, create chemically
impossible  reagent—product relationships, or
introduce nonphysical kinetic trajectories that
mislead the learner and inflate apparent accuracy
while degrading extrapolation. In leaching kinetics,

where material balances and stoichiometric
constraints are not optional but defining,
augmentation must therefore be physically

admissible by construction rather than statistically
plausible only.

Physics-informed machine learning offers a
principled alternative by incorporating governing
equations and constraints directly into training,
thereby regularizing learning and increasing the
effective information content beyond the measured
datapoints [12]. Physics-informed neural networks
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(PINNs), for example, embed differential-equation
residuals and boundary/initial conditions into the
learning objective and have demonstrated data-
efficient learning for forward and inverse problems
specifically in small-data regimes [13]. For
hydrometallurgical kinetics, this philosophy
suggests that enforcing strict material balances
during model construction and data enrichment can
simultaneously reduce hypothesis space and prevent
the model from learning physically impossible
trends.

Even when physics is enforced, an additional
approximation barrier arises from the training
dynamics of standard neural networks. Gradient-
trained networks often exhibit spectral bias,
learning low-frequency components of a target
function before higher-frequency or sharp features;
this can impede learning of rapid kinetic transitions
(e.g., induction periods, passivation thresholds, or
regime changes) from few observations [14].
Fourier feature mappings provide a practical remedy
by lifting inputs into a richer periodic basis so that
multilayer perceptrons can represent high-frequency
structure more efficiently, improving convergence
on functions with sharp or oscillatory components
[15].

Motivated by these gaps, this paper proposes a
hybrid small-data framework for predicting
molybdenite leaching kinetics that couples (i)
physically grounded data augmentation derived
from strict mass-conservation constraints with (ii) a
Fourier Feature Network to mitigate spectral bias. In
our case study, the available dataset comprises only
six experimental points, which are expanded via a
material-balance—consistent augmentation operator
prior to model training. The resulting hybrid
approach aims to deliver high predictive accuracy
under extreme data scarcity while remaining faithful
to the underlying chemistry and conservation laws.

2. Materials and Methods

Developing predictive models for metallurgical
processes is traditionally challenged by the scarcity
of experimental data. Laboratory and pilot-scale
leaching tests are resource-intensive and time-
consuming, rarely yielding datasets of "Big Data"
magnitude. To address this issue, this study employs
a hybrid approach combining Physics-Informed
Data Augmentation and Fourier Feature Mapping
Network architecture. This approach allows for
overcoming small sample size limitations and
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approximating the complex non-linear dependencies
of leaching kinetics.

2.1. Experimental Data Characterization and
Methodology

The model is built upon a series of laboratory
experiments on molybdenite concentrate leaching.
Experimental studies were conducted in a 1.0 L
thermostated glass reactor equipped with a Eurostar
60 control overhead stirrer to ensure a
hydrodynamic regime that eliminates external
diffusion limitations. The temperature of the
reaction mixture was maintained using a UT-4300
liquid thermostat with a regulation accuracy of
+0.1°C.

Input process variables were varied within
ranges that define the model's applicability limits:
Nitric acid concentration (HNO3) ranged from 0 to
50 g/L, and Sulfuric acid concentration (H,S0,)
ranged from 0 to 200 g/L. The influence of an
oxidizing agent was also considered: experiments
were conducted both without oxygen supply and
with oxygen purging at an average flow rate of 0.85
dm?*/min (range 0.7-1.0 dm?*/min). The leaching
duration in all experiments was 4—5 hours, which

Table 1 — Experimental Design Matrix and Leaching Results

was sufficient to reach conditional equilibrium in
the system.

Constant process parameters included an initial
concentrate mass of 50 g and a leaching solution
volume of 300 mL, corresponding to a Liquid-to-
Solid ratio (L:S) of 6:1. The chemical composition
of the feedstock was characterized by a
Molybdenum (Mo) content of 20.3% — 25.01%.
Upon completion of the process, the pulp was
vacuum filtered, and the resulting solid residue
(cake) was washed with hot distilled water to fully
remove soluble compounds.

Analytical control of reaction products was
performed using instrumental methods:

- Metal content in the liquid phase (filtrates and
wash waters) was determined by Atomic Absorption
Spectroscopy (AAS).

- The chemical composition of the solid phase
(cakes) was analyzed using X-ray Fluorescence
(XRF).

The modeling target variable (output target) was
the percentage of Molybdenum extraction into the
productive solution, which varied from 15.0% to
72.6%. The summary of base experiments is
presented in Table 1.

. HNO; H50, Oxygen Flow - Mo Contentin | Mo Extraction
Experiment ID | Concentration Concentration (dm>/min) * Initial Mass (g) Feed (%) (%)
(g/L) (g/L)
1 50 0 0 50 20.30 19.2
2 0 200 0 50 20.30 15.0
3 50 0 0.85 50 20.30 45.2
4 0 200 0.85 50 20.30 19.6
5 50 200 0 50 25.01 50.0
6 50 200 0.85 50 25.01 72.6

2.2. Synthetic Data Augmentation Algorithm

Given that the initial dataset consisted of a
limited number of points, direct training of a neural
network would inevitably lead to overfitting. To
resolve this, a synthetic data expansion algorithm
was developed based on the Monte Carlo method
and the Law of Conservation of Mass.

The synthetic data generation procedure is based
on stochastic perturbation of input parameters,
simulating the instrumental errors described in
Section 2.1. We assume that every measurement
contains an irreducible random error. For each base
experiment, a set of variations (N = 833) was

generated by adding Additive White Gaussian Noise
(AWGN) to the parameters.

Mathematically, this is described as follows: let
Xorig be the initial parameter value (e.g., concentrate

mass), then the synthetic value x,,,,, is defined as:

Xnew = Xorig T €
where € ~ NV (0,02)

Here, o was selected based on the precision of
the weighing equipment (+0.5 g) and the error
margin of the AAS/XRF methods (assumed at 0.2%
absolute).
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A key feature is the strict adherence to the
material balance. After introducing noise to the mass
(B,) and content (4;), the mass of metal in the feed
(M;,) was calculated as:

_Al'Bl
"~ 100

The target variable Extraction (E) was also
subjected to variation, after which the mass of metal
in the solution (M,,;) was determined via reverse
calculation:

M., = Esyth * Miy
sol — 100

This approach guarantees that each of the 5,000
synthesized data points satisfies the balance
equation, which is critical for the physical
interpretability of the model.

2.3.  Fourier
Architecture

The choice of architecture was dictated by the
"spectral bias" phenomenon. Classical Multi-Layer
Perceptrons (MLP) tend to approximate data with
smooth, low-frequency functions. However, sulfide
leaching kinetics are characterized by sharp non-
linear transitions when the rate-limiting step
changes (e.g., transition from kinetic to diffusion

Feature  Neural Network

Fourier Feature Mapping Layer

Input Layer (sin/cos projection)

control upon changing temperature or reagent). A
standard neural network tends to "blur" transitions.

To address this, a Fourier Feature Mapping
architecture was employed. The input vector v is
projected into a frequency space before being fed
into the network:

y(v) = [cos(2mBv), sin(2nBv)]”

Where B € R™*4 is a weight matrix sampled
from a normal distribution V' (0, 62.4;,).

This transformation allows the network,
analogous to Fourier series, to approximate complex
functions via a sum of harmonics. The empirically
selected parameter 05.4;. = 1.0 provided a balance
between smoothing the noise of analytical
measurements and accurately reproducing the sharp
jumps in extraction efficiency.

The final architecture consists of:

1. - Input: 5 neurons (normalized parameters).

2. - Fourier Layer: Projection into 64 harmonic
features.

3.- Hidden Layers: Dense layers (64 and 32
neurons) with the tanh activation function, which,
being symmetric, aligns better with the periodic nature
of Fourier features.Output: 1 neuron (Extraction, %).

Training was conducted using backpropagation
with the Adam optimizer and Mean Squared Error
(MSE) loss function.

Hidden Dense Layer 1
(Tanh)

Input
Vectors

DIOIBIOI0,
TREER

AN

OQutput

(Extraction %)

Hidden Dense Layer 2
(Tanh)

Figure 1 — Architecture of the Neural Network with Fourier Features Layer
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3. Results and Discussion

The primary objective of this study was to
validate the hypothesis that applying physics-
informed data augmentation combined with a
Fourier Feature Neural Network allows for the
accurate modeling of molybdenite leaching kinetics
under conditions of extremely limited data samples.

3.1. Accuracy Assessment and Model Convergence

Upon completion of 600 training epochs, the
developed model demonstrated high predictive
capability. On the hold-out test set, the coefficient of
determination reached R? = 0.9793, while the Mean
Absolute Error (MAE) was fixed at 1.61%. Given
that the target extraction indicator in the initial

experimental data ranged widely from 15.0% to
72.6%, the obtained error of 1.6% is comparable to
the instrumental precision of laboratory analysis
methods (AAS/XRF), which typically lies within
the 3—5% range. This indicates that the model
successfully filtered out the stochastic noise
introduced during augmentation and identified the
deterministic kinetic trend.

The training dynamics (Figure 2) show a tight
correlation between the Loss curves for the training
and test sets. The absence of divergence between
them confirms that, despite the synthetic nature of
most of the data, the model did not overfit specific
noise patterns but learned the generalized mass
conservation laws embedded in the generation
algorithm.

L0 —4

0.8

0.6

MSE Loss

0.4 7

0.2 1

—— Train Loss
Test Loss

0.01

T T
0 100 200

T T T T
300 400 500 600

Epochs

Figure 2 — Training and Test Loss Dynamics

3.2.  Interpretation  of
Dependencies

The "Predicted vs. Actual" scatter plot (Figure
3) demonstrates a high density of point clustering
along the ideal bisector. The model correctly
reproduces the data clustering corresponding to the
six base leaching regimes. A critically important
result is that the Fourier Feature network
successfully addressed the issue of "spectral bias."
A standard Multi-Layer Perceptron (MLP) would
tend to average the prediction; however, the
proposed architecture accurately described the sharp
non-linear jumps in efficiency.

Specifically, the model clearly differentiated the
influence of the oxidizing agent. According to the

Physicochemical

source data, introducing oxygen (0.7-1.0 dm3/min)
into a system with nitric acid increased extraction
from 50.0% to 72.6%. The model captured this
dependency, assigning higher extraction
probabilities to vectors with non-zero oxygen flow.
This confirms the physical consistency of the model:
it implicitly learned the stoichiometry of sulfide
oxidation reactions where oxygen acts as the
limiting reagent.

3.3. Residual Analysis and Reliability

The error distribution histogram (Figure 4)
exhibits the shape of a normal distribution centered
at zero, indicating the absence of systematic bias.
The model predicts both low extraction rates (using
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only sulfuric acid) and high rates (in an oxidative
environment) with equal accuracy. The homosce-
dasticity of the residuals confirms that the model can

be used as a reliable "virtual analyzer" across the
entire range of process operating parameters with a
consistent precision level (MAE=1.61%).

== Ideal Fit
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Figure 3 — Predicted vs. Actual Molybdenum Extraction Scatter Plot (R?>=0.979)
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Figure 4 — Histogram of Prediction Residuals

Thus, the combination of rigid material balance
constraints (during data generation) and the
flexibility of the Fourier architecture (during

training) allowed for compensating for the lack of

empirical information, effectively transforming a
"Small Data" problem into a physics-based learning
task.

4. Conclusion

This paper presents and validates a novel
approach to modeling hydrometallurgical processes
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under conditions of severe experimental data
scarcity. Traditional data-driven machine learning
methods require hundreds of experiments to achieve
acceptable accuracy, which is often economically
unfeasible in industrial research. The proposed
hybrid method, combining Physics-Informed
Augmentation and Fourier Feature Networks,
successfully addresses this challenge.

The key findings of the study are as follows:

1. Efficiency on Small Samples: Based on
only 6 real laboratory experiments, a robust
predictive model was constructed with a coefficient



Nurdaulet Izmailov et al.

of determination R? = 0.9793 and a mean error MAE
=1.61%.

2. Physical Adequacy: The use of material
balance formulas as a constraint generator ensured
that the model adheres to the Law of Conservation
of Mass. The Fourier architecture enabled the model
to capture high-frequency dependencies sharp
jumps in extraction upon changing reagent regimes
that are typically ignored by classical neural
networks.

3. Practical Value: The developed model
serves as a digital twin of the laboratory setup. It
allows conducting silico experiments, optimizing
the consumption of expensive reagents (acids and
oxygen) without the need for time-consuming
physical tests.

The obtained results reveal open perspectives
for implementing such "lightweight" models into
automated process control systems (APCS) at
metallurgical enterprises, where they can act as real-
time virtual pulp composition analyzers. Future
research will focus on adapting this method for
forecasting the kinetics of sorption processes and the
leaching of complex polymetallic ores.
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