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MASS-CONSERVING PHYSICS-INFORMED AUGMENTATION  
AND FOURIER FEATURE NETWORKS FOR SMALL-DATA PREDICTION 

OF MOLYBDENITE (MO₂S) LEACHING KINETICS

Abstract. Molybdenum remains a strategic metal for advanced steels and catalysis, while environ-
mental and energy pressures are accelerating interest in hydrometallurgical leaching routes for molybde-
nite (MoS₂). Predicting leaching kinetics is difficult because the process is highly nonlinear and strongly 
influenced by reagent chemistry and gas–liquid conditions, yet experimental datasets in metallurgical 
laboratories are often extremely small. This manuscript develops a hybrid, data-efficient machine-learn-
ing approach designed specifically for small-data settings. The method combines physics-informed data 
augmentation that enforces strict mass conservation with a Fourier Feature Network intended to reduce 
spectral bias and better capture sharp kinetic transitions. Using only six experimental measurements, 
the resulting model achieves high predictive accuracy on held-out data (R² = 0.9793, MAE = 1.61%) 
and maintains stable generalization without evidence of train–test divergence. The study concludes that 
physically admissible augmentation coupled with Fourier-enriched representations can produce reliable 
kinetic surrogates from minimal data, supporting in-silico screening and optimization of leaching condi-
tions for process design and control.

Keywords: molybdenite leaching, hydrometallurgy, small data, physics-informed augmentation, 
mass conservation, Fourier feature networks, spectral bias.

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1. Introduction 
 
Molybdenum is a strategically important metal 

whose demand is sustained by high-temperature and 
corrosion-resistant steels, petrochemical catalysts, 
and a growing set of energy and functional 
applications. In industrial practice, molybdenum is 
obtained mainly from molybdenite (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆2) 
concentrates, and the conventional flowsheet has 
historically relied on oxidative roasting to 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑂𝑂𝑂𝑂3followed by downstream refining [1]. 
However, the energy intensity of roasting and the 
challenges of controlling sulfur-oxide emissions 
have strengthened the case for hydrometallurgical 
alternatives that target “low-emission” molybdenum 
recovery through leaching-based routes [2].  

Despite this motivation, a central difficulty is 
that 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆2leaching kinetics are strongly nonlinear 
and process specific. Oxidative dissolution can 
couple surface reaction, diffusion through boundary 
layers and evolving product films, and solution 

chemistry that may stabilize or remove molybdenum 
species via precipitation, adsorption, or 
complexation. For instance, nitric-acid pressure 
oxidative leaching exhibits pronounced sensitivities 
to oxygen pressure, acid concentration, and 
temperature, and reported regimes can shift as 
reaction products form and transport constraints 
evolve [3]. Similarly, oxidant-assisted leaching 
(e.g., chlorate in chloride media) displays multi-
parameter dependence on reagent ratios, agitation, 
and liquid-to-solid ratio while achieving very high 
extraction only within constrained operating 
windows [4]. Mechanical activation further 
complicates the picture by altering surface area, 
defect density, and even enabling solid-state 
reactions that change subsequent aqueous leaching 
pathways [5].  

In parallel, machine learning (ML) has become 
a practical complement to mechanistic modeling in 
chemical engineering because flexible learners can 
approximate high-dimensional, nonlinear mappings 
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between operating conditions and performance 
metrics at low evaluation cost. Recent perspectives 
emphasize that, with modern computation and better 
representations, ML can serve as a fast surrogate 
where first-principles models are incomplete or 
prohibitively expensive to solve repeatedly [6]. In 
minerals processing and extractive metallurgy, ML 
has similarly expanded from monitoring and soft 
sensing into broader flowsheet and operational 
analytics, with reviews documenting rapid adoption 
across process stages and data modalities [7].  

However, most high-capacity ML models are 
implicitly “big data” methods: they tend to 
generalize reliably only when trained on large, 
diverse datasets. This assumption is frequently 
violated in metallurgy. Leaching experiments are 
costly and time-consuming; they are constrained by 
analytical throughput and safety limits, and they 
must contend with ore variability and run-to-run 
heterogeneity. Consequently, datasets are often 
sparse, noisy, and statistically underpowered. The 
broader “small data” challenge has been highlighted 
across scientific ML, including in materials science, 
where limited labeled data can make model selection 
brittle and uncertainty high unless additional 
structure or priors are leveraged [8]. Data-efficient 
experimental strategies such as active learning help, 
but they still operate under severe data scarcity 
typical of laboratory and pilot studies [9].  

A common response to small datasets is 
synthetic data augmentation. In many domains, 
oversampling methods such as SMOTE and deep 
generative models such as GANs are used to enrich 
training sets and reduce overfitting [10,11]. Yet for 
physically governed chemical systems, naive 
synthetic samples can be actively harmful: they may 
violate conservation of mass, create chemically 
impossible reagent–product relationships, or 
introduce nonphysical kinetic trajectories that 
mislead the learner and inflate apparent accuracy 
while degrading extrapolation. In leaching kinetics, 
where material balances and stoichiometric 
constraints are not optional but defining, 
augmentation must therefore be physically 
admissible by construction rather than statistically 
plausible only.  

Physics-informed machine learning offers a 
principled alternative by incorporating governing 
equations and constraints directly into training, 
thereby regularizing learning and increasing the 
effective information content beyond the measured 
datapoints [12]. Physics-informed neural networks 

(PINNs), for example, embed differential-equation 
residuals and boundary/initial conditions into the 
learning objective and have demonstrated data-
efficient learning for forward and inverse problems 
specifically in small-data regimes [13]. For 
hydrometallurgical kinetics, this philosophy 
suggests that enforcing strict material balances 
during model construction and data enrichment can 
simultaneously reduce hypothesis space and prevent 
the model from learning physically impossible 
trends.  

Even when physics is enforced, an additional 
approximation barrier arises from the training 
dynamics of standard neural networks. Gradient-
trained networks often exhibit spectral bias, 
learning low-frequency components of a target 
function before higher-frequency or sharp features; 
this can impede learning of rapid kinetic transitions 
(e.g., induction periods, passivation thresholds, or 
regime changes) from few observations [14]. 
Fourier feature mappings provide a practical remedy 
by lifting inputs into a richer periodic basis so that 
multilayer perceptrons can represent high-frequency 
structure more efficiently, improving convergence 
on functions with sharp or oscillatory components 
[15].  

Motivated by these gaps, this paper proposes a 
hybrid small-data framework for predicting 
molybdenite leaching kinetics that couples (i) 
physically grounded data augmentation derived 
from strict mass-conservation constraints with (ii) a 
Fourier Feature Network to mitigate spectral bias. In 
our case study, the available dataset comprises only 
six experimental points, which are expanded via a 
material-balance–consistent augmentation operator 
prior to model training. The resulting hybrid 
approach aims to deliver high predictive accuracy 
under extreme data scarcity while remaining faithful 
to the underlying chemistry and conservation laws. 

 
2. Materials and Methods 
 
Developing predictive models for metallurgical 

processes is traditionally challenged by the scarcity 
of experimental data. Laboratory and pilot-scale 
leaching tests are resource-intensive and time-
consuming, rarely yielding datasets of "Big Data" 
magnitude. To address this issue, this study employs 
a hybrid approach combining Physics-Informed 
Data Augmentation and Fourier Feature Mapping 
Network architecture. This approach allows for 
overcoming small sample size limitations and 

 

approximating the complex non-linear dependencies 
of leaching kinetics. 

 
2.1. Experimental Data Characterization and 

Methodology 
The model is built upon a series of laboratory 

experiments on molybdenite concentrate leaching. 
Experimental studies were conducted in a 1.0 L 
thermostated glass reactor equipped with a Eurostar 
60 control overhead stirrer to ensure a 
hydrodynamic regime that eliminates external 
diffusion limitations. The temperature of the 
reaction mixture was maintained using a UT-4300 
liquid thermostat with a regulation accuracy of 
±0.1°𝐶𝐶𝐶𝐶.  

Input process variables were varied within 
ranges that define the model's applicability limits: 
Nitric acid concentration (𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑂𝑂𝑂𝑂3) ranged from 0 to 
50 g/L, and Sulfuric acid concentration (𝐻𝐻𝐻𝐻2𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂4) 
ranged from 0 to 200 g/L. The influence of an 
oxidizing agent was also considered: experiments 
were conducted both without oxygen supply and 
with oxygen purging at an average flow rate of 0.85 
dm³/min (range 0.7–1.0 dm³/min). The leaching 
duration in all experiments was 4–5 hours, which 

was sufficient to reach conditional equilibrium in 
the system. 

Constant process parameters included an initial 
concentrate mass of 50 g and a leaching solution 
volume of 300 mL, corresponding to a Liquid-to-
Solid ratio (L:S) of 6:1. The chemical composition 
of the feedstock was characterized by a 
Molybdenum (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) content of 20.3% – 25.01%. 
Upon completion of the process, the pulp was 
vacuum filtered, and the resulting solid residue 
(cake) was washed with hot distilled water to fully 
remove soluble compounds.  

Analytical control of reaction products was 
performed using instrumental methods: 

- Metal content in the liquid phase (filtrates and 
wash waters) was determined by Atomic Absorption 
Spectroscopy (AAS). 

- The chemical composition of the solid phase 
(cakes) was analyzed using X-ray Fluorescence 
(XRF). 

The modeling target variable (output target) was 
the percentage of Molybdenum extraction into the 
productive solution, which varied from 15.0% to 
72.6%. The summary of base experiments is 
presented in Table 1.

 
 

Table 1 – Experimental Design Matrix and Leaching Results 
 

Experiment ID 
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑂𝑂𝑂𝑂3 

Concentration 
(g/L) 

𝐻𝐻𝐻𝐻2𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂4 
Concentration 

(g/L) 

Oxygen Flow 
(dm³/min) * Initial Mass (g) Mo Content in 

Feed (%) 
Mo Extraction 

(%) 

1 50 0 0 50 20.30 19.2 
2 0 200 0 50 20.30 15.0 
3 50 0 0.85 50 20.30 45.2 
4 0 200 0.85 50 20.30 19.6 
5 50 200 0 50 25.01 50.0 
6 50 200 0.85 50 25.01 72.6 

 
 
2.2. Synthetic Data Augmentation Algorithm 
Given that the initial dataset consisted of a 

limited number of points, direct training of a neural 
network would inevitably lead to overfitting. To 
resolve this, a synthetic data expansion algorithm 
was developed based on the Monte Carlo method 
and the Law of Conservation of Mass. 

The synthetic data generation procedure is based 
on stochastic perturbation of input parameters, 
simulating the instrumental errors described in 
Section 2.1. We assume that every measurement 
contains an irreducible random error. For each base 
experiment, a set of variations (𝐻𝐻𝐻𝐻 = 833) was 

generated by adding Additive White Gaussian Noise 
(AWGN) to the parameters. 

Mathematically, this is described as follows: let 
𝑥𝑥𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 be the initial parameter value (e.g., concentrate 
mass), then the synthetic value 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is defined as: 

 
𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑥𝑥𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 + 𝜖𝜖𝜖𝜖,  
where 𝜖𝜖𝜖𝜖 ∼ 𝒩𝒩𝒩𝒩(0,𝜎𝜎𝜎𝜎2) 

Here, 𝜎𝜎𝜎𝜎 was selected based on the precision of 
the weighing equipment (±0.5 g) and the error 
margin of the AAS/XRF methods (assumed at 0.2% 
absolute). 
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A key feature is the strict adherence to the 
material balance. After introducing noise to the mass 
(𝐵𝐵𝐵𝐵1) and content (𝐴𝐴𝐴𝐴1), the mass of metal in the feed 
(𝑀𝑀𝑀𝑀𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) was calculated as: 

 

𝑀𝑀𝑀𝑀𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 =
𝐴𝐴𝐴𝐴1 ⋅ 𝐵𝐵𝐵𝐵1

100
 

 
The target variable Extraction (𝐸𝐸𝐸𝐸) was also 

subjected to variation, after which the mass of metal 
in the solution (𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑠𝑠𝑠𝑠) was determined via reverse 
calculation: 

𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑠𝑠𝑠𝑠 =
𝐸𝐸𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ ⋅ 𝑀𝑀𝑀𝑀𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

100
 

 
This approach guarantees that each of the 5,000 

synthesized data points satisfies the balance 
equation, which is critical for the physical 
interpretability of the model. 

 
2.3. Fourier Feature Neural Network 

Architecture 
The choice of architecture was dictated by the 

"spectral bias" phenomenon. Classical Multi-Layer 
Perceptrons (MLP) tend to approximate data with 
smooth, low-frequency functions. However, sulfide 
leaching kinetics are characterized by sharp non-
linear transitions when the rate-limiting step 
changes (e.g., transition from kinetic to diffusion 

control upon changing temperature or reagent). A 
standard neural network tends to "blur" transitions. 

To address this, a Fourier Feature Mapping 
architecture was employed. The input vector 𝐯𝐯𝐯𝐯 is 
projected into a frequency space before being fed 
into the network: 

 
𝛾𝛾𝛾𝛾(v) = [cos(2𝜋𝜋𝜋𝜋Bv), sin(2𝜋𝜋𝜋𝜋Bv)]𝑇𝑇𝑇𝑇 

 
Where B ∈ ℝ𝑚𝑚𝑚𝑚×𝑑𝑑𝑑𝑑 is a weight matrix sampled 

from a normal distribution 𝒩𝒩𝒩𝒩(0,𝜎𝜎𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛2 ). 
This transformation allows the network, 

analogous to Fourier series, to approximate complex 
functions via a sum of harmonics. The empirically 
selected parameter 𝜎𝜎𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛 = 1.0 provided a balance 
between smoothing the noise of analytical 
measurements and accurately reproducing the sharp 
jumps in extraction efficiency. 

The final architecture consists of: 
1. - Input: 5 neurons (normalized parameters). 
2. - Fourier Layer: Projection into 64 harmonic 

features. 
3. - Hidden Layers: Dense layers (64 and 32 

neurons) with the tanh activation function, which, 
being symmetric, aligns better with the periodic nature 
of Fourier features.Output: 1 neuron (Extraction, %). 

Training was conducted using backpropagation 
with the Adam optimizer and Mean Squared Error 
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Fourier Feature Neural Network allows for the 
accurate modeling of molybdenite leaching kinetics 
under conditions of extremely limited data samples. 

 
3.1. Accuracy Assessment and Model Convergence 
Upon completion of 600 training epochs, the 

developed model demonstrated high predictive 
capability. On the hold-out test set, the coefficient of 
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that the target extraction indicator in the initial 

experimental data ranged widely from 15.0% to 
72.6%, the obtained error of 1.6% is comparable to 
the instrumental precision of laboratory analysis 
methods (AAS/XRF), which typically lies within 
the 3–5% range. This indicates that the model 
successfully filtered out the stochastic noise 
introduced during augmentation and identified the 
deterministic kinetic trend. 

The training dynamics (Figure 2) show a tight 
correlation between the Loss curves for the training 
and test sets. The absence of divergence between 
them confirms that, despite the synthetic nature of 
most of the data, the model did not overfit specific 
noise patterns but learned the generalized mass 
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3.2. Interpretation of Physicochemical 

Dependencies 
The "Predicted vs. Actual" scatter plot (Figure 

3) demonstrates a high density of point clustering 
along the ideal bisector. The model correctly 
reproduces the data clustering corresponding to the 
six base leaching regimes. A critically important 
result is that the Fourier Feature network 
successfully addressed the issue of "spectral bias." 
A standard Multi-Layer Perceptron (MLP) would 
tend to average the prediction; however, the 
proposed architecture accurately described the sharp 
non-linear jumps in efficiency. 

Specifically, the model clearly differentiated the 
influence of the oxidizing agent. According to the 

source data, introducing oxygen (0.7–1.0 dm³/min) 
into a system with nitric acid increased extraction 
from 50.0% to 72.6%. The model captured this 
dependency, assigning higher extraction 
probabilities to vectors with non-zero oxygen flow. 
This confirms the physical consistency of the model: 
it implicitly learned the stoichiometry of sulfide 
oxidation reactions where oxygen acts as the 
limiting reagent. 

 
3.3. Residual Analysis and Reliability 
The error distribution histogram (Figure 4) 

exhibits the shape of a normal distribution centered 
at zero, indicating the absence of systematic bias. 
The model predicts both low extraction rates (using 
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100
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100
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only sulfuric acid) and high rates (in an oxidative 
environment) with equal accuracy. The homosce-
dasticity of the residuals confirms that the model can 

be used as a reliable "virtual analyzer" across the 
entire range of process operating parameters with a 
consistent precision level (MAE= 1.61%). 
 
 

 
Figure 3 – Predicted vs. Actual Molybdenum Extraction Scatter Plot (R2=0.979)  

 
 

 
Figure 4 – Histogram of Prediction Residuals 

 
 

Thus, the combination of rigid material balance 
constraints (during data generation) and the 
flexibility of the Fourier architecture (during 
training) allowed for compensating for the lack of 
empirical information, effectively transforming a 
"Small Data" problem into a physics-based learning 
task. 

 
4. Conclusion 
 
This paper presents and validates a novel 

approach to modeling hydrometallurgical processes 

under conditions of severe experimental data 
scarcity. Traditional data-driven machine learning 
methods require hundreds of experiments to achieve 
acceptable accuracy, which is often economically 
unfeasible in industrial research. The proposed 
hybrid method, combining Physics-Informed 
Augmentation and Fourier Feature Networks, 
successfully addresses this challenge. 

The key findings of the study are as follows: 
1. Efficiency on Small Samples: Based on 

only 6 real laboratory experiments, a robust 
predictive model was constructed with a coefficient 

 

of determination R2 = 0.9793 and a mean error MAE 
= 1.61%. 

2. Physical Adequacy: The use of material 
balance formulas as a constraint generator ensured 
that the model adheres to the Law of Conservation 
of Mass. The Fourier architecture enabled the model 
to capture high-frequency dependencies sharp 
jumps in extraction upon changing reagent regimes 
that are typically ignored by classical neural 
networks. 

3. Practical Value: The developed model 
serves as a digital twin of the laboratory setup. It 
allows conducting silico experiments, optimizing 
the consumption of expensive reagents (acids and 
oxygen) without the need for time-consuming 
physical tests. 

The obtained results reveal open perspectives 
for implementing such "lightweight" models into 
automated process control systems (APCS) at 
metallurgical enterprises, where they can act as real-
time virtual pulp composition analyzers. Future 
research will focus on adapting this method for 
forecasting the kinetics of sorption processes and the 
leaching of complex polymetallic ores. 
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