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INTELLIGENT SYSTEM FOR AUTOMATIC DETECTION
AND SCORING OF SHOOTING TARGETS BASED ON COMPUTER
VISION AND MICROCONTROLLER TECHNOLOGIES

Abstract. This paper presents an intelligent system for the automatic detection and scoring of shoot-
ing targets based on the Raspberry Pi 3 microcontroller platform and computer vision technologies. The
objective of the study is to develop an autonomous and highly accurate yet low-cost complex capable
of recording and analyzing shooting results without human intervention. The system integrates mecha-
tronic and algorithmic components, including Nema 17 stepper motors, color sensors, a webcam, and
a server-side image processing module, forming a unified cyber-physical architecture. The algorithmic
core is based on geometric calibration using homography, adaptive illumination equalization via CLA-
HE, and a radial precision evaluation model. To detect bullet holes, a modified YOLOv8-Nano neural
network architecture was employed, optimized for recognizing low-contrast circular targets. Experimen-
tal results confirmed the high accuracy and robustness of the proposed approach: under stable lighting
conditions, the system achieved a spatial recognition precision of +£2 mm with a response time below
0.2 seconds. The training and validation curves of the model demonstrate smooth convergence and
stable generalization, confirming the correctness of the architectural modifications and the optimization
of the loss function. The scientific novelty of this work lies in the integration of a mechatronic framework
and deep-learning algorithms into a unified real-time system that enables automatic target replacement,
image processing, and result visualization through a web interface. The practical significance is in the
potential application of the system in sports schools, mechatronics laboratories, training centers, and
research test ranges requiring accurate and autonomous shooting evaluation. Future work will focus on
extending system capabilities through the integration of advanced neural network algorithms (YOLOVS,
Detectron2), cloud-based technologies, and automatic camera stabilization, further improving accuracy
and autonomy while maintaining low implementation cost.

Keywords: intelligent system; automatic scoring; computer vision; cyber-physical system; shooting
range.

1. Introduction systems employ pressure sensors, acoustic micro-

phones, and optical cameras. However, many of

In shooting sports and training environments,
accurate and objective scoring of shots is one of
the key factors determining the quality of athlete
training and the transparency of judging. In most
cases, score evaluation is still performed manually:
an instructor or referee visually inspects the target
sheet, marks bullet holes, and compares their posi-
tions with scoring zones. In such methods, the hu-
man factor plays a significant role, often leading to
classification errors—especially when hits occur near
ring boundaries—and increases the overall process-
ing time [1], [2], [3].

The rapid development of digital technologies
and computer vision in recent years has significantly
influenced the automation of shooting disciplines.
Modern electronic targets and automatic scoring
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these solutions remain inaccessible due to their high
cost, need for specialized equipment, and complex
maintenance requirements [4], [5], [6], [7]. This
issue is particularly relevant for sports clubs, edu-
cational institutions, and laboratories that require
affordable, compact, and reliable alternatives to
industrial-grade systems.

Therefore, the development of an intelligent
system for automatic score calculation based on the
Raspberry Pi microcontroller platform and comput-
er vision methods represents a timely and practical
research direction. Combining low-cost hardware
with advanced image processing algorithms offers
new opportunities for the large-scale adoption of
digital technologies in sports infrastructure, educa-
tion, and training processes [8], [9], [10].
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The recent progress in computer vision (CV)
and deep learning (DL) has greatly expanded the
potential for image-based analysis of shooting tar-
gets with bullet holes. In recent years, many stud-
ies have focused on applying these methods for au-
tomated target evaluation. For example, Butt [11]
demonstrated that modern neural network models
such as YOLOvVS and Detectron2 can identify bullet
holes and automatically compute scores with an ac-
curacy of up to 96.7%. Moreover, these approaches
can process small-caliber bullet holes and mitigate
errors caused by lighting variation and camera noise
[12].

However, these solutions typically require pow-
erful GPUs and stable laboratory conditions, which
limits their deployment in real-world environments.
Consequently, developing compact, affordable, and
autonomous systems remains an essential challenge
for practical shooting applications. This work ad-
dresses this challenge by developing an intelligent
shooting complex based on Raspberry Pi 3, integrat-
ing a mechatronic target-switching module, web-
cam, sensors, and image analysis algorithms. The
proposed system performs real-time shot detection
and scoring automatically, without the need for a
human operator.

The designed shooting system captures and ana-
lyzes each shot using a camera and the Raspberry Pi
3 microcontroller. Captured images are transmitted
to a server, where computer vision algorithms detect
bullet holes and calculate scores [13], [16]. This ap-
proach eliminates manual evaluation and improves
measurement accuracy.

Several studies have addressed the problem of
precise hit recognition and metric image correction.
For instance, McNally [20] proposed the DeepDarts
solution, which automatically determines the co-
ordinates of bullet holes. The proposed intelligent
system combines deep learning methods with geo-
metric calibration based on key points of the target,
thus integrating machine learning and projective ge-
ometry to achieve sub-pixel recognition accuracy.
Furthermore, the use of homographic transforma-
tion based on RANSAC and local affine corrections
helps eliminate perspective distortions and achieve
metric accuracy of 0.5-1.0 pixels [21], [22].

Experimental results showed that under sta-
ble lighting conditions and proper calibration,
metric accuracy reached approximately +2 mm
with a response time of less than 0.2 seconds

[17]. As aresult, an integrated intelligent system
was created, combining mechanical precision,
adaptive algorithms, and affordable hardware,
making it highly suitable for large-scale imple-
mentation [18], [19].

The presented work contributes significantly
to the field of intelligent computer vision systems
and mechatronic complexes for the automation of
measurement and scoring processes in shooting
disciplines. The scientific significance of this study
lies in the synergy between hardware and compu-
tational solutions, while the practical relevance is
demonstrated by the scalability and adaptability
of the proposed architecture, making it applicable
in sports schools, educational laboratories, and re-
search centers as a universal platform for automated
hit analysis.

Experimental validation confirmed the operabil-
ity of the proposed architecture under real shoot-
ing conditions. The Raspberry Pi 3-based system
demonstrated stable performance even under lim-
ited computational resources, achieving coordinate
recognition accuracy of £2 mm and response times
under 0.2 seconds. Achieving such performance us-
ing low-cost components and computer vision algo-
rithms highlights the practical value of the proposed
approach. These results show that the integration of
deep learning (YOLOV8), homographic calibration,
and CLAHE normalization can represent a new di-
rection in the development of intelligent shooting
systems that balance accuracy, autonomy, and im-
plementation cost.

2. Methods and Materials

The study presents a system consisting of corre-
lated hardware and software modules that provides
automatic target replacement, result recording, and
data transmission to a server for analysis. Figure 1
shows the structural and functional diagram of the
automated shooting system based on the Raspberry
Pi 3 microcontroller. As can be seen, the diagram
illustrates the Raspberry Pi 3 functioning as the cen-
tral controller, which coordinates the operation of
Nema 17 stepper motors through the A4988 driver,
as well as its connection with color sensors, a con-
trol button, and a webcam. This design implements
the principles of cyber-physical integration by com-
bining sensory, executive, and computational com-
ponents into a unified system.
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Figure 1 — Structural diagram of hardware module interactions.

Figure 2 presents the schematic diagram describ-
ing the algorithmic logic of the proposed system.
On the left side, the process of target replacement is
shown: when the corresponding button is activated,
the motor rotates the cassette until the sensor detects
a black mark. This detection serves as a signal to
stop rotation and start a new shooting cycle. On the
right side, the process of result recording is illus-
trated, where the camera captures an image and au-
tomatically sends it to the server for data processing
and score calculation. Thus, the presented diagram
demonstrates the dual-loop operating principle of
the system, in which parallel processes of data pro-
cessing, target analysis, and preparation for the next
capture occur simultaneously. Consequently, this
solution increases the overall performance of the
system and makes it suitable for real-time operation.

The system includes a camera aimed at the
target, a Python-based processing server utilizing
deep-learning and computer-vision libraries, and a
web interface for visualization of the results. The
USB camera continuously streams video from the
target area, and the server processes each frame in
real time. The processing pipeline performs hit de-
tection using a neural network, followed by contour
analysis to identify double or overlapping bullet
holes, and then calculates scores according to the
hits, displaying the results in real time. The trained
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model, combined with the scoring algorithm, gener-
ates a list of detected holes with their coordinates on
the target and the corresponding point values.

To train the bullet-hole recognition model, a
dataset of images was created using targets shot in
a real firing range that correspond to the standard
used at a real military training ground (see Figure
3). This target differs from others by its standard
color (green) and scoring zones (from 5 to 10
points). To achieve maximum model adaptability,
the images were taken indoors under various light-
ing conditions. In total, 60 images of targets with
different numbers of hits were collected (each of
the 6 targets contained 10 hits, corresponding to 10
shooting attempts, as in a real range). To increase
the dataset size, data augmentation techniques were
applied, including random brightness and contrast
adjustments, addition of noise, and variation of the
green hue to improve model robustness under dif-
ferent lighting conditions and various printer ink
levels when printing targets. Annotation was per-
formed manually using the RoboFlow utility: each
bullet hole was assigned a bounding box. The da-
taset was divided into training, validation, and test
subsets in an 80/10/10 ratio. In addition, a special
method for detecting double hits on the target was
implemented to ensure proper operation in real-
world conditions.
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Figure 2 — Algorithmic block diagram of system operation.

Figure 3 — Example from the dataset.

For the task of bullet-hole detection, the YO-
LOv8-Nano architecture was chosen — one of the
most compact and efficient models in the YOLO
(You Only Look Once) family.

To adapt the detector to the specific features
of real military-target images, the model was fine-
tuned on the collected dataset using pretrained
YOLOV8-Nano weights from the COCO dataset.
Training was carried out on an NVIDIA GTX 1060

(6 GB) GPU using the PyTorch framework and the
official Ultralytics YOLO implementation.

The training hyperparameters were as follows:
input image size — 640x640 pixels; batch size — 16;
number of epochs — 50; optimizer — Adam with a
learning rate of 0.001. The composite YOLO loss
function included terms for classification, localiza-
tion, and objectness. The final evaluation showed
the following results: precision = 0.98, recall = 0.95,
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and mAP@0.5 = 0.97, confirming the high reliabil-
ity of the trained model.

The obtained bounding-box coordinates were
then used for subsequent visualization in the form
of a heatmap representing the distribution of bullet
impacts with localization of each hole, as well as for
score computation based on the distance between
the center of the hole and the center of the target.

The proposed system performs automatic detec-
tion and evaluation of bullet holes on fired targets
using a two-stage processing pipeline: (1) real-time
detection of impacts using the precisely tuned YO-
LOv8-Nano model, and (2) calculation of scores
based on spatial analysis of detected hits.

Each incoming video frame is processed by
the YOLOv8-Nano detector, which identifies bul-
let holes as small, dark, circular areas on the lighter
background of the target. The model outputs a set
of bounding boxes and corresponding confidence
scores indicating the location and probability of
each detected impact. For every bounding box, the
coordinates of its center are calculated, representing
the estimated point of impact.

To improve spatial consistency and eliminate
false detections, the area inside each bounding box
is further analyzed through contour extraction and
region filtering. Only contours corresponding to re-
alistic hole sizes are retained. This refinement en-
sures that small noise patterns, shadows, or marks
on the target surface do not cause false detections.

Additionally, the architecture of the model was
modified to achieve better accuracy in hole recogni-
tion. The standard head of the YOLO architecture
outputs the distributions of bounding-box param-
eters and class logits. We extended these outputs
by adding one continuous channel per anchor, rep-
resenting the normalized radial distance from the
hole center to the target center. Specifically, in the
model’s concatenated output tensor, the data are di-
vided as follows:

outputs—(box_distr, class_logits, d), (1)

where d is the distance between the centers, normal-
ized to [0,1].

To train the new distance heads, an additional
regression loss term Ldist. was introduced. The total
training loss is defined as follows:

L = AboxLbox + AclsLcls +
+ AdflLdfl + AdistLdist, 2)
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After inference, a heatmap is generated to visu-
alize the distribution and density of hits across the
target surface. Each detected hit is represented on
the heatmap by a circle whose intensity is propor-
tional to its score. This provides both a visual in-
terpretation of shooting accuracy and computational
support for handling overlapping or repeated hits.

After processing each frame, the system com-
putes a numerical score for every detected hit based
on its distance ddd from the target center. A continu-
ous scoring function is applied to model the gradual
decrease of accuracy with increasing radial devia-
tion. Specifically, the scoring function combines a
Gaussian decay with linear normalization, which
can be expressed as:

S=max (0.10-[0.5-e—
—2062d2 + 0.5 - (1 — Rmaxd)), 3)

where d is the Euclidean distance between the de-
tected hit and the center of the target, c\sigmac con-
trols the sensitivity to radial deviation, and Rmax
is the maximum scoring radius. This formulation
provides a smooth transition of scores and ensures
reliable handling of minor inaccuracies arising from
detection noise or perspective correction.

3. Results

The mechanism of target replacement and the al-
gorithmic scheme demonstrate the interdependence
of the mechanical, sensor, and computational sub-
systems of the automated shooting complex. Figure
4 shows the flat frame of the supporting structure
with the sheet target fixed in its central area.

Figure 5 illustrates the side view, which shows
the mechanical target-changing assembly and the
cylindrical actuator (roller/drum), the vertical sup-
port stand, and the guide rails along which the target
holder moves.

Figure 6 presents a frontal frame and the posi-
tion of the camera relative to the target plane, as well
as the geometry of its field of view, where the cam-
era frustum rays are visualized. It can be observed
that the center of the frustum coincides with the cen-
ter of the target, which in turn guarantees minimal
perspective distortion and simplifies calibration.
Moreover, the optical axis being perpendicular to
the target plane within small deviations is extremely
important for ensuring accuracy in the conversion
from pixel coordinates to metric coordinates.
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Figure 4 — Top view (frame support and target in working position).

Figure 5 — Side profile of the target-changing mechanism (roller/drum drive).

Figure 6 — Frontal perspective: optical axis, field of view, and visible camera frustum.
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The perspective view in Figure 7 demonstrates
the full integration of the mechanical frame, target
replacement drive, and the operator/camera posi-
tion. This view highlights the layout in which the
frame rests on a rigid platform, and inclined brac-
es increase structural stability. Furthermore, it can
be seen that the drive components and the sensor
mounting location are positioned to the left of the
operator. From a scientific point of view, the layout
plays an important role, as it ensures repeatability of
shooting conditions, such as fixed distance, identical

tilt angle, and a uniform reference plane. In addi-
tion, based on this figure, one can justify the choice
of materials and dimensions of the frame elements
for calculating natural frequencies and damping, as
well as demonstrate in more detail the mounting
zones for additional vibration control sensors.

The developed system successfully detected
bullet hits and calculated corresponding scores us-
ing the proposed distance-based scoring algorithm.
The process of hole identification and score calcula-
tion in real time is shown in Figure 8.

Figure 7 — General perspective view of the structural assembly and operator’s working area.

Figure 8 — Example of bullet-hole identification and real-time score calculation.

The YOLO-based detection model demonstrat-
ed high accuracy in identifying bullet holes under
various lighting conditions and shooting distances.
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The system achieved a detection accuracy of 97%,
with an average scoring deviation of +0.3 points
compared to manual evaluation.
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Visual analysis confirmed that bounding-box
detection and center estimation remained stable
even in cases of partial overlap between bullet trac-
es. Moreover, the strategy of merging closely locat-
ed bounding boxes helped eliminate false positives
caused by multiple detections of the same hole.

Experimental testing was conducted on a data-
set containing 500 images of paper targets. For each

train/box_loss train/cls_loss

train/dfl_loss

image, the computed scores were compared with
ground-truth values provided by experts. The results
showed a strong correlation between automatic and
manual evaluations, confirming the reliability of the
proposed approach. Figure 9 presents the visualiza-
tion of the model’s metrics on the training and vali-
dation sets obtained during the conducted experi-
ments.

metrics/precision(B) metrics/recall(B)
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Figure 9 — Visualization of model metrics on training and validation sets.

4. Discussion and Limitation

The results of this study demonstrate that the
developed intelligent automatic scoring system,
based on the Raspberry Pi 3 microcontroller,
Nema 17 stepper motors, and image-processing
algorithms, provides a high degree of autonomy
and sufficient accuracy for practical use in educa-
tional and sports shooting ranges. The integration
of mechanical, sensor, and computational modules
made it possible to form a synchronized structure
in which each subsystem — from target control to
image analysis — operates within a unified cyber-
physical framework.

The conducted experiments confirmed that the
average error in determining bullet-hole coordinates
does not exceed £2 mm, while the system response
time is less than 0.2 seconds. These results are
comparable to those of industrial-grade solutions
but were achieved using low-cost components and
open-source software. Therefore, the implemented
architecture demonstrates strong potential for de-

ployment in affordable educational shooting com-
plexes and mechatronics laboratories.

The proposed scoring algorithm, based on the
radial distance from the target center, exhibited com-
putational efficiency and interpretability. Unlike tra-
ditional approaches relying on binary segmentation
or manual inspection, the proposed method provides
real-time automatic feedback with minimal compu-
tational overhead. The use of a linear—exponential
weighting function enabled the system to effectively
model the human perception of shot accuracy, en-
suring consistency between objective computational
scoring and subjective sports evaluation.

A comparison with existing systems [11], [18],
[20] showed that the proposed solution achieves
a comparable level of accuracy with significantly
lower costs for equipment and calibration. The ap-
plication of homographic correction and adaptive
histogram equalization (CLAHE) helped mitigate
the effects of uneven lighting and optical distor-
tions, thereby substantially improving the reliability
of image analysis under real-world conditions.
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Nevertheless, several limitations remain. The
system’s accuracy depends on lighting stability:
under low or fluctuating illumination, the localiza-
tion accuracy of bullet holes may decrease despite
the use of CLAHE. Another critical factor is the
mechanical stability of the structure — vibrations of
the camera or the supporting frame can cause shifts
in metric coordinates, which directly affect scor-
ing precision. A further limitation lies in the lim-
ited computational power of the Raspberry Pi 3,
which prevents the real-time deployment of more
advanced deep-learning architectures such as YO-
LOV8 or Detectron2.

To overcome these limitations, future work
will focus on upgrading the hardware, including
the transition to Raspberry Pi 5 or NVIDIA Jetson
Nano, integrating a gyroscopic tilt-compensation
module, and implementing automatic camera cali-
bration algorithms. Another promising research di-
rection involves the integration of neural networks
for real-time video stream analysis, as well as the
development of spatiotemporal models capable of
reconstructing bullet trajectories and evaluating ac-
curacy in three-dimensional space.

Overall, the obtained results confirm that the
proposed system represents a reliable and scalable
foundation for building a new generation of intel-
ligent shooting complexes. The combination of me-
chanical precision, intelligent adaptability, and cost
efficiency makes it an effective tool for automating
measurement and analysis processes in sports and
educational environments.

5. Conclusion

As aresult of this study, an integrated intelligent
system for the automatic detection, localization, and
scoring of bullet impacts for shooting training com-
plexes was developed and experimentally validated.
The system combines a mechatronic platform—
based on the Raspberry Pi 3 microcontroller, Nema
17 stepper motors, color sensors, and a webcam—
with modern computer vision algorithms, including
a modified YOLOv8-Nano model and a heatmap-
based localization refinement method. The architec-
ture ensures coordinated operation of the mechani-
cal, sensory, and computational components within
a unified cyber-physical loop and implements an
autonomous cycle of shot detection, analysis, and
real-time result visualization.

Experimental evaluation demonstrated high
metric and computational efficiency: under proper
camera calibration and stable lighting conditions,

56

the system achieved coordinate determination accu-
racy of up to £2 mm and a response time below 0.2
seconds. These results are comparable to those of
commercial shooting complexes but were achieved
using inexpensive and widely available components.
The modified YOLO architecture and improved loss
function provided reliable localization of small and
low-contrast bullet holes, while the training curves
showed smooth convergence and stable improve-
ment of precision, recall, and mAP over 50 epochs.
The combination of exponential and linear weight-
ing in the scoring mechanism, along with localiza-
tion refinement via heatmap analysis, improved
robustness in detecting overlapping and closely
spaced hits.

The practical significance of the work is con-
firmed by the feasibility of implementing the system
in sports schools, mechatronics laboratories, and
technical control systems, where the construction
remains both scalable and cost-effective. Transi-
tioning to more powerful hardware platforms (such
as Raspberry Pi 5 or Jetson Nano) will enable the
use of heavier deep-learning architectures for detec-
tion and segmentation, as well as expansion toward
cloud-based data processing, storage, and analytics.

Future research perspectives include automatic
camera stabilization and dynamic calibration, self-
learning mechanisms for model improvement using
field data, and the integration of cloud services for
centralized monitoring and long-term data storage.
Overall, the conducted study demonstrates that the
synergy between adapted deep-learning algorithms
and a well-designed mechatronic architecture en-
ables the creation of an affordable, precise, and re-
liable automated shot analysis system suitable for
practical application in both sports and engineering
domains.
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