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SMART BUILDING CLIMATE CONTROL:  
MACHINE LEARNING APPROACH  

FOR INDIVIDUAL THERMAL PREFERENCE PREDICTION

Abstract. Modern building management systems rely on uniform climate settings that fail to accom-
modate individual occupant preferences, resulting in energy waste and reduced comfort satisfaction. 
This study presents a data-driven approach for personalized thermal comfort prediction using machine 
learning algorithms integrated with multimodal sensor networks. We developed and evaluated three 
classification models (Random Forest, XGBoost, and Artificial Neural Network) using environmental 
parameters (air temperature, humidity, CO2 concentration) and physiological measurements (heart rate 
variability, blood pressure, oxygen saturation) collected from controlled experiments with eight partici-
pants under various thermal conditions. The optimized Random Forest model achieved 95% accuracy 
in predicting seven-level thermal sensation votes using only ten key features identified through SHAP 
analysis. Indoor air temperature emerged as the dominant predictor, while physiological parameters 
provided complementary information for personalized comfort assessment. The proposed system dem-
onstrates significant potential for integration into smart building automation, enabling dynamic climate 
control that adapts to individual preferences while optimizing energy consumption. Implementation of 
such personalized HVAC systems could reduce energy usage by up to 20% compared to conventional 
static temperature control, while simultaneously improving occupant satisfaction and productivity in 
commercial buildings.

Keywords: smart buildings, thermal comfort prediction, machine learning, HVAC optimization, per-
sonalized climate control, energy efficiency, sensor fusion.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1. Introduction 
 
Buildings consume approximately 40% of 

global energy, with heating, ventilation, and air 
conditioning (HVAC) systems accounting for 
nearly 50% of this consumption [1]. In commercial 
buildings alone, inefficient climate control results 
in annual energy losses exceeding $29 billion 
globally, while simultaneously causing 
productivity losses due to occupant discomfort [2]. 
Despite these significant economic and 
environmental impacts, most building management 
systems continue to rely on static temperature 
setpoints that fail to accommodate individual 
thermal preferences. 

Traditional HVAC control strategies assume 
uniform thermal comfort across all occupants, 
typically maintaining indoor temperatures between 
20-24°C based on population averages [3]. 
However, research demonstrates substantial 
individual variations in thermal perception, with 
personal comfort preferences differing by up to 
6°C among occupants in the same space [4]. This 

one-size-fits-all approach leads to overcooling or 
overheating, resulting in energy waste and 
occupant dissatisfaction rates exceeding 30% in 
typical office environments [5]. Furthermore, 
conventional systems lack real-time adaptation 
capabilities, failing to respond to changing 
occupancy patterns, weather conditions, or 
individual physiological states [6]. 

Recent advances in Internet of Things (IoT) 
sensors and machine learning algorithms present 
unprecedented opportunities for developing 
intelligent, personalized climate control systems 
[7]. Smart building platforms now enable 
continuous monitoring of environmental 
parameters and occupant behavior, while wearable 
devices provide real-time physiological data for 
individual comfort assessment [8]. Several pilot 
implementations have demonstrated the potential 
for machine learning-driven HVAC optimization, 
achieving energy savings of 15-25% while 
improving occupant satisfaction [9], [10]. 
However, these systems typically rely on limited 
sensor inputs and simplified comfort models that 
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may not capture the complex relationships between 
environmental conditions, physiological responses, 
and individual thermal preferences [11]. 

Despite growing interest in personalized buil-
ding automation, significant research gaps remain 
in developing robust, scalable comfort prediction 
models. Existing approaches often analyze environ-
mental and physiological data streams in isolation, 
failing to leverage the synergistic effects of multi-
modal sensor fusion [12]. Additionally, most stu-
dies focus on laboratory conditions with homoge-
neous participant groups, limiting the generaliza-
bility of findings to diverse real-world applications 
[13]. Machine learning techniques show promise 
for addressing these challenges, with recent studies 
demonstrating successful applications of artificial 
neural networks and ensemble methods for thermal 
comfort prediction [14-15]. However, most existing 
models rely on limited feature sets and lack 
comprehensive integration of physiological 
monitoring data [16-17]. This study addresses these 
limitations by developing and evaluating machine 
learning models that integrate environmental 

monitoring with physiological sensing for accurate, 
personalized thermal comfort prediction. The 
primary objective is to demonstrate the feasibility 
of implementing such systems in smart buildings to 
achieve simultaneous improvements in energy 
efficiency and occupant satisfaction through 
advanced sensor fusion and explainable AI 
techniques [18-20]. 

 
2. Materials and Methods 
 
This study employed a controlled experimental 

approach to develop and validate machine learning 
models for personalized thermal comfort 
prediction. The methodology integrates multimodal 
sensor data collection, advanced data 
preprocessing, and ensemble learning techniques to 
create a robust classification system capable of 
predicting individual thermal preferences across 
diverse environmental conditions. The overall 
system architecture is illustrated in Figure 1, 
showing the integration of multimodal sensors, 
data processing, and machine learning components.

 
 

 
 

Figure 1 – System architecture for personalized thermal comfort prediction. 
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2.1. Experimental Setup and Data Collection 
Eight healthy male volunteers aged 18-23 years 

(mean BMI: 24.1 ± 4.2 kg/m²) participated in 
controlled thermal comfort experiments conducted 
in a purpose-built laboratory facility. The 
experimental protocol was designed to expose 
participants to systematic thermal discomfort 
conditions while continuously monitoring both 
environmental parameters and physiological 
responses. All participants provided informed 
consent and wore standardized clothing (T-shirt 
and trousers) to maintain consistent thermal 
insulation throughout the experiments. 

The laboratory setup consisted of two isolated 
chambers: a baseline comfort room maintained at 
21-22°C with CO₂ levels of 500-1000 ppm, and an 
experimental room where thermal conditions were 
systematically varied. Four distinct experimental 
scenarios were implemented: cold discomfort (14-
16°C) with moderate CO₂ (500-1200 ppm), cold 
discomfort with elevated CO₂ (1500+ ppm), hot 
discomfort (30-32°C) with moderate CO₂, and hot 

discomfort with elevated CO₂. Each experimental 
session comprised a 12-minute baseline phase 
followed by four 36-minute exposure trials 
corresponding to these conditions. 

Environmental and physiological data were col-
lected using a comprehensive sensor network integ-
rated through a centralized monitoring system. En-
vironmental parameters included air temperature, 
relative humidity, CO₂ concentration, and outdoor 
temperature, measured continuously at 1 Hz sam-
pling rate using calibrated sensors (Xiaomi Qing-
ping Air Monitor systems with ±0.3°C temperature 
accuracy and ±50 ppm CO₂ precision). Physiolo-
gical monitoring encompassed heart rate variability 
via Polar H10 chest strap monitors, blood pressure 
measurements using automated upper-arm cuffs, 
and blood oxygen saturation through fingertip pul-
se oximeters. Participants provided thermal sensa-
tion votes every six minutes using the standard 
ASHRAE seven-point scale (-3: cold to +3: hot), 
synchronized with physiological measurements to 
ensure temporal alignment of all data streams. 

 
 

Table 1 – Sensor specifications and measurement parameters. 
 

Parameter Type Sensors Used Measurements Accuracy Sampling Rate 
Environmental Xiaomi Qingping CGS2 Pro Temperature, Humidity, 

CO₂, PM2.5 
±0.3°C, ±3% RH, ±50 ppm 1 Hz 

Aqara Temperature & 
Humidity Sensor 

Temperature, Humidity, 
Pressure 

±0.3°C, ±3% RH, ±0.12 kPa 1 Hz 

Physiological Polar H10 Heart Rate 
Monitor 

Heart rate, HRV metrics ±1 bpm, ECG-comparable 1 Hz 

Automated Blood Pressure 
Cuff 

Systolic/Diastolic pressure ±3 mmHg Per trial 

Fingertip Pulse Oximeter Blood oxygen saturation ±2% 1 Hz 
 
 
2.2. Data Processing and Feature Engineering 
Raw sensor data underwent systematic prepro-

cessing to address temporal misalignment and 
varying sampling frequencies across different mea-
surement systems. High-frequency environmental 
signals were processed using windowed averaging 
to reduce noise and harmonize sampling rates, 
while sparsely sampled physiological parameters 
(blood pressure, oxygen saturation) were 
interpolated using piecewise cubic splines to 
maintain signal continuity. This approach 
preserved essential signal characteristics while 
enabling integration across diverse data streams. 

Feature extraction generated 24 distinct 
variables encompassing environmental conditions 

(temperature, humidity, CO₂, outdoor temperature), 
heart rate variability metrics (AVNN, SDNN, 
rMSSD, pNN50, LF, HF, LF/HF ratio, Alpha_1), 
physiological parameters (heart rate, blood pres-
sure, oxygen saturation), anthropometric charac-
teristics (age, BMI, weight, body composition), and 
subjective thermal sensation votes. All features 
were normalized using min-max scaling according 
to Equation (1) to ensure consistent input ranges 
for machine learning algorithms: 

 
𝑥𝑥𝑥𝑥′ =  (𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) / (𝑥𝑥𝑥𝑥_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) (1) 

 
The final dataset comprised 1,536 samples with 

complete feature vectors, randomly partitioned into 
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training (1,148 samples), testing (288 samples), 
and validation (100 samples) subsets using 
stratified sampling to maintain class distribution 
across thermal sensation categories. 

 
2.3. Machine Learning Models and Evaluation 
Three advanced classification algorithms were 

implemented and compared for thermal comfort 
prediction: Random Forest, XGBoost, and 
Artificial Neural Network. Random Forest 
employed ensemble decision trees with bootstrap 
aggregation to enhance generalization and reduce 
overfitting. XGBoost utilized gradient boosting 
with regularization techniques for optimized 
performance and computational efficiency. The 
neural network architecture featured five fully 

connected layers (256, 128, 64, 64, 32 neurons) 
with batch normalization, ReLU activation, and 
30% dropout, trained using Adam optimizer with 
0.001 learning rate and cross-entropy loss function. 

Hyperparameter optimization was conducted 
through exhaustive grid search combined with 10-
fold stratified cross-validation. Model performance 
evaluation employed standard classification metrics 
including accuracy, precision, recall, and F1-score, 
computed both per-class and macro-averaged 
across all seven thermal sensation levels. Model 
interpretability was achieved through SHAP 
(SHapley Additive exPlanations) analysis, which 
quantifies individual feature contributions to 
predictions using cooperative game theory 
principles:

 
 

𝜙𝜙𝜙𝜙𝑖𝑖𝑖𝑖 = � |𝑆𝑆𝑆𝑆|! (|𝑁𝑁𝑁𝑁| − |𝑆𝑆𝑆𝑆| − 1)! |𝑁𝑁𝑁𝑁|! �𝑓𝑓𝑓𝑓𝑆𝑆𝑆𝑆∪{𝑖𝑖𝑖𝑖}�𝑥𝑥𝑥𝑥𝑆𝑆𝑆𝑆∪{𝑖𝑖𝑖𝑖}� − 𝑓𝑓𝑓𝑓𝑆𝑆𝑆𝑆(𝑥𝑥𝑥𝑥𝑆𝑆𝑆𝑆)�
𝑆𝑆𝑆𝑆⊆𝑁𝑁𝑁𝑁 {𝑖𝑖𝑖𝑖}

 (2) 

 
 
where 𝜑𝜑𝜑𝜑ᵢ represents the SHAP value for feature 𝑚𝑚𝑚𝑚, 
𝑁𝑁𝑁𝑁 is the complete feature set, 𝑆𝑆𝑆𝑆 denotes feature 
subsets, and 𝑓𝑓𝑓𝑓 represents the model's expected 
output. This analysis identified the most influential 
predictors and enabled dimensionality reduction by 
retraining models using only the top-ranked 
features, thereby improving both computational 
efficiency and model interpretability for practical 
deployment scenarios. 

 
3. Results 
 
The machine learning models were evaluated 

through comprehensive performance analysis, 
feature importance assessment, and independent 
validation to determine their suitability for practical 
thermal comfort prediction applications. The 
results demonstrate significant potential for 
accurate personalized climate control in smart 
building environments. 

 
3.1. Model Performance Comparison 
The experimental dataset yielded 1,536 

complete samples with 24 features each, which 
were systematically evaluated across three machine 
learning algorithms. Initial model training on the 
full feature set demonstrated strong predictive 
performance across all approaches, with XGBoost 
achieving the highest accuracy of 91%, followed 

closely by Random Forest at 90% and the Artificial 
Neural Network at 89%. All models showed robust 
performance in distinguishing between the seven 
thermal sensation levels, with macro-averaged F1-
scores ranging from 0.88 to 0.90. 

Feature importance analysis through SHAP 
revealed that dimensionality reduction significantly 
enhanced ensemble model performance while 
reducing computational requirements. When 
retrained using only the top 10 most influential 
features, Random Forest accuracy improved from 
90% to 94%, and XGBoost performance increased 
from 91% to 93%. The threshold of ten features 
was selected based on the SHAP summary 
analysis, which revealed a distinct 'elbow point' in 
feature importance distributions; features ranked 
below this threshold provided negligible predictive 
gain while increasing computational complexity. 
Conversely, the neural network showed decreased 
performance (89% to 83%), suggesting greater 
dependency on feature interactions that were lost 
during dimensionality reduction. Based on superior 
performance after feature selection, the Random 
Forest model was selected for final validation using 
10 selected features and was subsequently 
validated on an independent hold-out dataset of 100 
samples, achieving a final accuracy of 95% with 
macro-averaged F1-score of 0.939. 

 

Table 2 – Comparative performance of machine learning models for thermal comfort prediction. 
 

Model Full Dataset (24 features) Reduced Dataset (10 features) Accuracy 
Change Accuracy F1-Score Accuracy F1-Score 

Random Forest 0.90 0.89 0.94 0.94 +4% 
XGBoost 0.91 0.90 0.93 0.92 +2% 
Neural Network 0.89 0.88 0.83 0.80 -6% 
 
 
3.2. Feature Importance Analysis 
SHAP analysis identified indoor air 

temperature as the dominant predictor across all 
models, exhibiting approximately 2-3 times greater 
influence than any other single feature (Figure 2). 
The top five most influential parameters 
consistently included environmental factors 
(temperature, humidity, CO₂ concentration, 
outdoor temperature) and one physiological 

parameter (diastolic blood pressure). While all 
three models showed similar feature ranking 
patterns, the Random Forest model demonstrated 
the most stable performance improvement with 
reduced features, making it the optimal choice for 
deployment. Environmental parameters dominated 
the feature rankings, with indoor temperature alone 
accounting for approximately 30-35% of the total 
predictive power. 

 
 

 
 

Figure 2 – Feature importance ranking for thermal  
comfort prediction based on SHAP analysis. 

 
 
3.3. Model Validation and Practical 

Performance 
The selected Random Forest model (chosen 

based on its superior performance with reduced 
features) demonstrated excellent classification 
performance with minimal misclassification errors. 
Analysis of the confusion matrix revealed that all 
prediction errors occurred between adjacent 
thermal sensation categories (e.g., confusing 
"neutral" with "slightly cool"), indicating that the 
model captures the underlying thermal comfort 
continuum effectively. No instances of extreme 
misclassification (e.g., predicting "hot" when actual 
sensation was "cold") were observed, suggesting 
robust model behavior suitable for practical HVAC 
control applications. 

Final validation on the independent test set 
confirmed the model's generalization capability, 
achieving 95% accuracy with perfect classification 
of neutral and hot thermal sensations. The five 
misclassifications that occurred were exclusively 
between neighboring comfort levels, demonstrating 
that the system maintains reliable performance 
even on completely unseen data. These results 
indicate strong potential for real-world deployment 
in smart building systems, where such accuracy 
levels would enable precise climate control while 
minimizing energy waste through unnecessary 
heating or cooling adjustments. The classification 
performance is visualized in Figure 3, which shows 
the confusion matrix for the best-performing 
model.
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in smart building systems, where such accuracy 
levels would enable precise climate control while 
minimizing energy waste through unnecessary 
heating or cooling adjustments. The classification 
performance is visualized in Figure 3, which shows 
the confusion matrix for the best-performing 
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Figure 3 – Confusion matrix for optimized Random Forest model showing 95% accuracy  

on independent validation dataset. Perfect classification achieved for neutral  
and hot sensations, with remaining errors limited to adjacent categories. 

 
 
4. Discussion 
 
The results demonstrate that machine learning 

approaches can effectively predict personalized 
thermal comfort with high accuracy, achieving 
performance levels suitable for practical smart 
building applications. The 95% accuracy obtained 
by the optimized Random Forest model represents 
a significant advancement over traditional static 
HVAC control systems, which typically achieve 
occupant satisfaction rates of only 70-80% [5]. 

The dominance of indoor air temperature as the 
primary predictor aligns with established thermal 
comfort theory, while the significant contribution 
of humidity and CO₂ concentration highlights the 
importance of comprehensive environmental 
monitoring. Notably, the relatively modest 
influence of heart rate variability parameters 
challenges previous research emphasis on HRV-
based comfort assessment, suggesting that when 
comprehensive environmental and physiological 
data are available, HRV provides complementary 
rather than primary predictive information. 

The superior performance of ensemble methods 
(Random Forest and XGBoost) over neural 
networks, particularly after dimensionality 

reduction, indicates that thermal comfort prediction 
benefits more from robust feature selection than 
complex nonlinear transformations. The superior 
performance of ensemble methods over neural 
networks is also attributable to the dataset size 
(1,536 samples). Deep learning architecture 
typically requires significantly larger data volumes 
to establish complex feature representations and 
avoid overfitting, whereas ensemble tree-based 
algorithms demonstrated superior robustness on 
this tabular dataset. This finding has practical 
implications for deployment in resource-
constrained building automation systems, where 
computational efficiency is crucial. 

 
4.1. Limitations 
While the proposed system demonstrates high 

predictive accuracy, it is important to acknowledge 
certain limitations regarding participant 
demographics. The experimental data was collected 
exclusively from healthy male participants aged 
18–23 years. Since thermal comfort perception is 
known to vary significantly across gender, age 
groups, and metabolic rates, the current model may 
not immediately generalize to broader populations, 
such as females or elderly occupants. Practical 

deployment in diverse environments would require 
transfer learning strategies or expanded data 
collection to adapt the model to these specific 
demographic groups. 

 
5. Conclusions 
 
This study successfully demonstrated the 

feasibility of accurate personalized thermal comfort 
prediction using machine learning and multimodal 
sensor fusion. The optimized Random Forest 
model achieved 95% accuracy using only 10 key 
features, with indoor air temperature identified as 
the dominant predictor. The system shows strong 
potential for integration into smart building 
automation, enabling dynamic climate control that 
adapts to individual preferences while optimizing 
energy consumption. Future work should focus on 
expanding participant diversity and implementing 
real-time HVAC control systems to validate energy 
savings potential in operational buildings. 
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