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SMART BUILDING CLIMATE CONTROL:
MACHINE LEARNING APPROACH
FOR INDIVIDUAL THERMAL PREFERENCE PREDICTION

Abstract. Modern building management systems rely on uniform climate settings that fail to accom-
modate individual occupant preferences, resulting in energy waste and reduced comfort satisfaction.
This study presents a data-driven approach for personalized thermal comfort prediction using machine
learning algorithms integrated with multimodal sensor networks. We developed and evaluated three
classification models (Random Forest, XGBoost, and Artificial Neural Network) using environmental
parameters (air temperature, humidity, CO, concentration) and physiological measurements (heart rate
variability, blood pressure, oxygen saturation) collected from controlled experiments with eight partici-
pants under various thermal conditions. The optimized Random Forest model achieved 95% accuracy
in predicting seven-level thermal sensation votes using only ten key features identified through SHAP
analysis. Indoor air temperature emerged as the dominant predictor, while physiological parameters
provided complementary information for personalized comfort assessment. The proposed system dem-
onstrates significant potential for integration into smart building automation, enabling dynamic climate
control that adapts to individual preferences while optimizing energy consumption. Implementation of
such personalized HVAC systems could reduce energy usage by up to 20% compared to conventional
static temperature control, while simultaneously improving occupant satisfaction and productivity in
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commercial buildings.

Keywords: smart buildings, thermal comfort prediction, machine learning, HVAC optimization, per-
sonalized climate control, energy efficiency, sensor fusion.

1. Introduction

Buildings consume approximately 40% of
global energy, with heating, ventilation, and air
conditioning (HVAC) systems accounting for
nearly 50% of this consumption [1]. In commercial
buildings alone, inefficient climate control results
in annual energy losses exceeding $29 billion

globally, while simultaneously causing
productivity losses due to occupant discomfort [2].
Despite  these  significant economic  and

environmental impacts, most building management
systems continue to rely on static temperature
setpoints that fail to accommodate individual
thermal preferences.

Traditional HVAC control strategies assume
uniform thermal comfort across all occupants,
typically maintaining indoor temperatures between
20-24°C based on population averages [3].
However, research demonstrates substantial
individual variations in thermal perception, with
personal comfort preferences differing by up to
6°C among occupants in the same space [4]. This

rﬁﬂ:ﬁ:"] Licensed under CC BY-NC 4.0

one-size-fits-all approach leads to overcooling or
overheating, resulting in energy waste and
occupant dissatisfaction rates exceeding 30% in
typical office environments [5]. Furthermore,
conventional systems lack real-time adaptation
capabilities, failing to respond to changing
occupancy patterns, weather conditions, or
individual physiological states [6].

Recent advances in Internet of Things (IoT)
sensors and machine learning algorithms present
unprecedented  opportunities for developing
intelligent, personalized climate control systems
[7]. Smart building platforms now enable
continuous  monitoring  of  environmental
parameters and occupant behavior, while wearable
devices provide real-time physiological data for
individual comfort assessment [8]. Several pilot
implementations have demonstrated the potential
for machine learning-driven HVAC optimization,
achieving energy savings of 15-25% while
improving occupant satisfaction [9], [10].
However, these systems typically rely on limited
sensor inputs and simplified comfort models that
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may not capture the complex relationships between
environmental conditions, physiological responses,
and individual thermal preferences [11].

Despite growing interest in personalized buil-
ding automation, significant research gaps remain
in developing robust, scalable comfort prediction
models. Existing approaches often analyze environ-
mental and physiological data streams in isolation,
failing to leverage the synergistic effects of multi-
modal sensor fusion [12]. Additionally, most stu-
dies focus on laboratory conditions with homoge-
neous participant groups, limiting the generaliza-
bility of findings to diverse real-world applications
[13]. Machine learning techniques show promise
for addressing these challenges, with recent studies
demonstrating successful applications of artificial
neural networks and ensemble methods for thermal
comfort prediction [14-15]. However, most existing
models rely on limited feature sets and lack
comprehensive  integration of physiological
monitoring data [16-17]. This study addresses these
limitations by developing and evaluating machine
learning models that integrate environmental

monitoring with physiological sensing for accurate,
personalized thermal comfort prediction. The
primary objective is to demonstrate the feasibility
of implementing such systems in smart buildings to
achieve simultaneous improvements in energy
efficiency and occupant satisfaction through
advanced sensor fusion and explainable Al
techniques [18-20].

2. Materials and Methods

This study employed a controlled experimental
approach to develop and validate machine learning
models for personalized thermal comfort
prediction. The methodology integrates multimodal
sensor data collection, advanced data
preprocessing, and ensemble learning techniques to
create a robust classification system capable of
predicting individual thermal preferences across
diverse environmental conditions. The overall
system architecture is illustrated in Figure 1,
showing the integration of multimodal sensors,
data processing, and machine learning components.

) SENSORS
Environmental: Temperature, Humidity, COz
Physiological: Heart Rate, Blood Pressure
Subjective: Thermal Sensation Votes

DATA PROCESSING
Data Collection & Preprocessing
Feature Engineering (24 Features)
SHAP Analysis (Top 10 Features)

MACHINE LEARNING MODELS
Random Forest (95% Accuracy)
XGBoost (93% Accuracy)

Neural Network (83% Accuracy)

SYSTEM OUTPUT

Thermal Comfort Prediction
HVAC Control & Energy Optimization

Figure 1 — System architecture for personalized thermal comfort prediction.
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2.1. Experimental Setup and Data Collection

Eight healthy male volunteers aged 18-23 years
(mean BMI: 24.1 + 4.2 kg/m?) participated in
controlled thermal comfort experiments conducted
in a purpose-built laboratory facility. The
experimental protocol was designed to expose
participants to systematic thermal discomfort
conditions while continuously monitoring both
environmental parameters and physiological
responses. All participants provided informed
consent and wore standardized clothing (T-shirt
and trousers) to maintain consistent thermal
insulation throughout the experiments.

The laboratory setup consisted of two isolated
chambers: a baseline comfort room maintained at
21-22°C with CO; levels of 500-1000 ppm, and an
experimental room where thermal conditions were
systematically varied. Four distinct experimental
scenarios were implemented: cold discomfort (14-
16°C) with moderate CO, (500-1200 ppm), cold
discomfort with elevated CO, (1500+ ppm), hot
discomfort (30-32°C) with moderate CO,, and hot

Table 1 — Sensor specifications and measurement parameters.

discomfort with elevated CO,. Each experimental
session comprised a 12-minute baseline phase
followed by four 36-minute exposure trials
corresponding to these conditions.

Environmental and physiological data were col-
lected using a comprehensive sensor network integ-
rated through a centralized monitoring system. En-
vironmental parameters included air temperature,
relative humidity, CO, concentration, and outdoor
temperature, measured continuously at 1 Hz sam-
pling rate using calibrated sensors (Xiaomi Qing-
ping Air Monitor systems with +0.3°C temperature
accuracy and +50 ppm CO, precision). Physiolo-
gical monitoring encompassed heart rate variability
via Polar H10 chest strap monitors, blood pressure
measurements using automated upper-arm cuffs,
and blood oxygen saturation through fingertip pul-
se oximeters. Participants provided thermal sensa-
tion votes every six minutes using the standard
ASHRAE seven-point scale (-3: cold to +3: hot),
synchronized with physiological measurements to
ensure temporal alignment of all data streams.

Parameter Type Sensors Used Measurements Accuracy Sampling Rate
Environmental | Xiaomi Qingping CGS2 Pro | Temperature, Humidity, +0.3°C, £3% RH, +£50 ppm 1 Hz
CO,, PM2.5

Agqara Temperature & Temperature, Humidity, +0.3°C, £3% RH, +£0.12 kPa 1 Hz
Humidity Sensor Pressure

Physiological | Polar H10 Heart Rate Heart rate, HRV metrics +1 bpm, ECG-comparable 1 Hz
Monitor
Automated Blood Pressure Systolic/Diastolic pressure +3 mmHg Per trial
Cuff
Fingertip Pulse Oximeter Blood oxygen saturation +2% 1 Hz

2.2. Data Processing and Feature Engineering

Raw sensor data underwent systematic prepro-
cessing to address temporal misalignment and
varying sampling frequencies across different mea-
surement systems. High-frequency environmental
signals were processed using windowed averaging
to reduce noise and harmonize sampling rates,
while sparsely sampled physiological parameters
(blood pressure, oxygen saturation) were
interpolated using piecewise cubic splines to
maintain  signal continuity. This approach
preserved essential signal characteristics while
enabling integration across diverse data streams.

Feature extraction generated 24 distinct
variables encompassing environmental conditions

(temperature, humidity, CO,, outdoor temperature),
heart rate variability metrics (AVNN, SDNN,
rMSSD, pNNS50, LF, HF, LF/HF ratio, Alpha 1),
physiological parameters (heart rate, blood pres-
sure, oxygen saturation), anthropometric charac-
teristics (age, BMI, weight, body composition), and
subjective thermal sensation votes. All features
were normalized using min-max scaling according
to Equation (1) to ensure consistent input ranges
for machine learning algorithms:

!

x' = (x —x_min) / (x_max — x_min) )

The final dataset comprised 1,536 samples with
complete feature vectors, randomly partitioned into
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training (1,148 samples), testing (288 samples),
and validation (100 samples) subsets using
stratified sampling to maintain class distribution
across thermal sensation categories.

2.3. Machine Learning Models and Evaluation

Three advanced classification algorithms were
implemented and compared for thermal comfort
prediction: Random Forest, XGBoost, and
Artificial Neural Network. Random Forest
employed ensemble decision trees with bootstrap
aggregation to enhance generalization and reduce
overfitting. XGBoost utilized gradient boosting

connected layers (256, 128, 64, 64, 32 neurons)
with batch normalization, ReLU activation, and
30% dropout, trained using Adam optimizer with
0.001 learning rate and cross-entropy loss function.

Hyperparameter optimization was conducted
through exhaustive grid search combined with 10-
fold stratified cross-validation. Model performance
evaluation employed standard classification metrics
including accuracy, precision, recall, and F1-score,
computed both per-class and macro-averaged
across all seven thermal sensation levels. Model
interpretability was achieved through SHAP
(SHapley Additive exPlanations) analysis, which

with regularization techniques for optimized quantifies individual feature contributions to
performance and computational efficiency. The  predictions wusing cooperative game theory
neural network architecture featured five fully  principles:

=Y ISILANI = IsI= DN [from (xsum) = f05)] @

SCN {i}

where ¢; represents the SHAP value for feature i,
N is the complete feature set, S denotes feature
subsets, and f represents the model's expected
output. This analysis identified the most influential
predictors and enabled dimensionality reduction by
retraining models using only the top-ranked
features, thereby improving both computational
efficiency and model interpretability for practical
deployment scenarios.

3. Results

The machine learning models were evaluated
through comprehensive performance analysis,
feature importance assessment, and independent
validation to determine their suitability for practical
thermal comfort prediction applications. The
results demonstrate significant potential for
accurate personalized climate control in smart
building environments.

3.1. Model Performance Comparison

The experimental dataset yielded 1,536
complete samples with 24 features each, which
were systematically evaluated across three machine
learning algorithms. Initial model training on the
full feature set demonstrated strong predictive
performance across all approaches, with XGBoost
achieving the highest accuracy of 91%, followed
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closely by Random Forest at 90% and the Artificial
Neural Network at 89%. All models showed robust
performance in distinguishing between the seven
thermal sensation levels, with macro-averaged F1-
scores ranging from 0.88 to 0.90.

Feature importance analysis through SHAP
revealed that dimensionality reduction significantly
enhanced ensemble model performance while
reducing computational requirements. When
retrained using only the top 10 most influential
features, Random Forest accuracy improved from
90% to 94%, and XGBoost performance increased
from 91% to 93%. The threshold of ten features
was selected based on the SHAP summary
analysis, which revealed a distinct 'elbow point' in
feature importance distributions; features ranked
below this threshold provided negligible predictive
gain while increasing computational complexity.
Conversely, the neural network showed decreased
performance (89% to 83%), suggesting greater
dependency on feature interactions that were lost
during dimensionality reduction. Based on superior
performance after feature selection, the Random
Forest model was selected for final validation using
10 selected features and was subsequently
validated on an independent hold-out dataset of 100
samples, achieving a final accuracy of 95% with
macro-averaged F1-score of 0.939.
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Table 2 — Comparative performance of machine learning models for thermal comfort prediction.

Model Full Dataset (24 features) Reduced Dataset (10 features) Accuracy
Accuracy F1-Score Accuracy F1-Score Change
Random Forest 0.90 0.89 0.94 0.94 +4%
XGBoost 0.91 0.90 0.93 0.92 +2%
Neural Network 0.89 0.88 0.83 0.80 -6%

3.2. Feature Importance Analysis

SHAP  analysis identified indoor air
temperature as the dominant predictor across all
models, exhibiting approximately 2-3 times greater
influence than any other single feature (Figure 2).
The top five most influential parameters
consistently  included environmental factors
(temperature, humidity, CO, concentration,
outdoor temperature) and one physiological

parameter (diastolic blood pressure). While all
three models showed similar feature ranking
patterns, the Random Forest model demonstrated
the most stable performance improvement with
reduced features, making it the optimal choice for
deployment. Environmental parameters dominated
the feature rankings, with indoor temperature alone
accounting for approximately 30-35% of the total
predictive power.

Top 5 Feature Importances for Random Forest

diastolic -

Classes

Class 3
Class 2
Class 1
Class 4
Class 5
Class 6
Class 0

0.0 01 02

03 0.4

mean(|SHAP value|) (average impact on model output magnitude)

Figure 2 — Feature importance ranking for thermal
comfort prediction based on SHAP analysis.

3.3.  Model
Performance

The selected Random Forest model (chosen
based on its superior performance with reduced
features) demonstrated excellent classification
performance with minimal misclassification errors.
Analysis of the confusion matrix revealed that all
prediction errors occurred between adjacent
thermal sensation categories (e.g., confusing
"neutral" with "slightly cool"), indicating that the
model captures the underlying thermal comfort
continuum effectively. No instances of extreme
misclassification (e.g., predicting "hot" when actual
sensation was "cold") were observed, suggesting
robust model behavior suitable for practical HVAC
control applications.

Validation and  Practical

Final validation on the independent test set
confirmed the model's generalization capability,
achieving 95% accuracy with perfect classification
of neutral and hot thermal sensations. The five
misclassifications that occurred were exclusively
between neighboring comfort levels, demonstrating
that the system maintains reliable performance
even on completely unseen data. These results
indicate strong potential for real-world deployment
in smart building systems, where such accuracy
levels would enable precise climate control while
minimizing energy waste through unnecessary
heating or cooling adjustments. The classification
performance is visualized in Figure 3, which shows
the confusion matrix for the best-performing
model.

35



Smart building climate control: machine learning approach for individual thermal preference prediction

- 25

- 20

4 5 6

Figure 3 — Confusion matrix for optimized Random Forest model showing 95% accuracy
on independent validation dataset. Perfect classification achieved for neutral
and hot sensations, with remaining errors limited to adjacent categories.

4. Discussion

The results demonstrate that machine learning
approaches can effectively predict personalized
thermal comfort with high accuracy, achieving
performance levels suitable for practical smart
building applications. The 95% accuracy obtained
by the optimized Random Forest model represents
a significant advancement over traditional static
HVAC control systems, which typically achieve
occupant satisfaction rates of only 70-80% [5].

The dominance of indoor air temperature as the
primary predictor aligns with established thermal
comfort theory, while the significant contribution
of humidity and CO;, concentration highlights the
importance of comprehensive environmental
monitoring. Notably, the relatively modest
influence of heart rate variability parameters
challenges previous research emphasis on HRV-
based comfort assessment, suggesting that when
comprehensive environmental and physiological
data are available, HRV provides complementary
rather than primary predictive information.

The superior performance of ensemble methods
(Random Forest and XGBoost) over neural
networks, particularly after  dimensionality
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reduction, indicates that thermal comfort prediction
benefits more from robust feature selection than
complex nonlinear transformations. The superior
performance of ensemble methods over neural
networks is also attributable to the dataset size
(1,536 samples). Deep learning architecture
typically requires significantly larger data volumes
to establish complex feature representations and
avoid overfitting, whereas ensemble tree-based
algorithms demonstrated superior robustness on
this tabular dataset. This finding has practical
implications for deployment in resource-
constrained building automation systems, where
computational efficiency is crucial.

4.1. Limitations

While the proposed system demonstrates high
predictive accuracy, it is important to acknowledge
certain limitations regarding participant
demographics. The experimental data was collected
exclusively from healthy male participants aged
18-23 years. Since thermal comfort perception is
known to vary significantly across gender, age
groups, and metabolic rates, the current model may
not immediately generalize to broader populations,
such as females or elderly occupants. Practical
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deployment in diverse environments would require
transfer learning strategies or expanded data
collection to adapt the model to these specific
demographic groups.

5. Conclusions

This study successfully demonstrated the
feasibility of accurate personalized thermal comfort
prediction using machine learning and multimodal
sensor fusion. The optimized Random Forest
model achieved 95% accuracy using only 10 key
features, with indoor air temperature identified as
the dominant predictor. The system shows strong
potential for integration into smart building
automation, enabling dynamic climate control that
adapts to individual preferences while optimizing
energy consumption. Future work should focus on
expanding participant diversity and implementing
real-time HVAC control systems to validate energy
savings potential in operational buildings.
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