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Abstract. Cardiovascular disease is the leading global cause of death; ischemic heart disease (IHD) 
is its most common and lethal form, motivating scalable, non-invasive screening. We tested whether a 
single 60-minute photoplethysmography (PPG) recording from the Zhurek fingertip wearable can dis-
tinguish healthy autonomic control from IHD-related dysregulation. Agreement with a three-lead Holter 
reference was clinically acceptable (HR −0.601 bpm; SDNN +33.1 ms; RMSSD −4.8 ms). Forty hour-
long sessions were analyzed (20 healthy, 18–22 years; 20 angiography-confirmed IHD) using eight HRV/
demographic features. Mann–Whitney tests showed significant differences for SDNN, LF, HF, Max_HR, 
BMI, and age (p<0.05), and a two-component PCA (49.5% variance) separated cohorts without labels. 
SHAP for a CatBoost model highlighted LF and age as strongest positive contributors and HF as protec-
tive. Thus, one-hour PPG preserves diagnostically useful autonomic signatures, enabling ~24× shorter 
monitoring than Holter and supporting scalable ambulatory IHD risk stratification.
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1. Introduction

Cardiovascular diseases (CVDs) remain the 
top cause of mortality globally. WHO estimates in-
dicate that in 2019, 17.9 million people died from 
CVDs–32% of all deaths–with heart attacks and 
strokes accounting for 85% of these losses. Among 
the 17 million premature deaths (under 70) from 
non-communicable diseases that year, 38% were 
attributable to CVDs [1]. Ischemic heart disease 
(IHD) is among the most prevalent CVD entities and 
a principal driver of mortality [2]. In Kazakhstan, 
2022 statistics show circulatory diseases as the most 
widespread among adults (3,962.5 per 100,000), of 
which IHD contributes 560.7 per 100,000, under-
scoring its substantial share within cardiovascular 
morbidity [3].

IHD imposes a heavy clinical and economic 
burden, substantially elevating both mortality and 
morbidity worldwide [4]. Coronary artery disease 
(CAD)–predominantly a consequence of atheroscle-
rosis–is the leading cause of IHD and culminates 
in myocardial ischemia. The core pathophysiolog-
ic mechanism is obstructive atherosclerosis of the 
coronary vessels, which compromises myocardial 
perfusion [5]. In view of rising pressure on health 

systems, there is a pressing need for early, non-in-
vasive diagnostic strategies that can flag IHD before 
irreversible outcomes such as myocardial infarction 
or chronic heart failure (CHF) occur [6]. 

Heart rate variability (HRV)–the beat-to-beat 
fluctuation in cardiac cycle duration [7]–is a non-
invasive rhythm-based marker that yields clinically 
useful information about overall physiological status 
[8]. HRV indexes the heart’s adaptive capacity and 
an individual’s ability to respond to environmental 
challenges via compensatory mechanisms [9]. It is 
shaped by autonomic inputs–particularly parasym-
pathetic tone–while reflecting the joint activity of 
sympathetic and parasympathetic branches. De-
pressed HRV has been linked to adverse endpoints 
including myocardial infarction, progression of ath-
erosclerosis, heart failure, IHD, and sudden cardiac 
death [10]. Accordingly, HRV analysis is central to 
evaluating autonomic nervous system (ANS) func-
tion [11]. Conventional coronary assessment tools 
are frequently costly, invasive, and suboptimal for 
timely detection of evolving ischemia [12]. Al-
though diagnostic angiography is among the most 
definitive techniques for identifying cardiac abnor-
malities, it carries high expense, potential complica-
tions, and requires specialized expertise; traditional 
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workflows can be time-intensive, error-prone, and 
resource-heavy, risking misclassification and higher 
costs [13]. This motivates a shift toward reliable, 
non-invasive, early detection methods–HRV-based 
approaches being a prime candidate.

CVDs continue to dominate global morbidity 
and mortality statistics, reinforcing the importance 
of early identification in high-risk groups and the 
development of effective preventive and therapeutic 
interventions. Recent efforts emphasize multifac-
torial risk models that fuse physiological metrics, 
lifestyle variables, and medical history to improve 
predictive performance and enable personalization 
[14]. HRV–the variability in RR (NN) intervals–is 
a widely used non-invasive indicator of cardiovas-
cular status [15]. In IHD, reductions in time-domain 
indices (SDNN, RMSSD, pNN50) and alterations 
in the LF/HF ratio derived from frequency-domain 
analysis (FFT of RR intervals) associate with myo-
cardial injury and higher adverse-event risk; an LF/
HF imbalance signals disrupted autonomic control 
during ischemic episodes. This review consolidates 
key HRV features and highlights their clinical util-
ity in monitoring and managing IHD [6], [16].

Patients with IHD and arrhythmias generally 
exhibit lower HRV than healthy controls. Time-do-
main measures such as SDNN, SDANN, RMSSD, 
pNN50, and the triangular index, together with non-
linear descriptors (α, α1, α2, SD1, SD2, Approxi-
mate Entropy, Sample Entropy), are markedly di-
minished in these populations [17]. These patterns 
reflect impaired autonomic regulation and support 
the role of HRV analytics in tracking cardiac func-
tion and disease trajectory in IHD [15].

In atrial fibrillation (AF), HRV–defined as 
fluctuations in ventricular response intervals–is 
not random; its nonlinear structure, especially 
multiscale entropy (MSE), carries clinical mean-
ing. Numerous studies link HRV parameters to 
ischemic stroke risk in AF, and MSE of HRV has 
been proposed as a predictor in this group [18]. 
Notably, higher sample-entropy values at specific 
time scales from 24-hour Holter data correlate with 
increased stroke likelihood in AF patients without 
prior stroke. HRV has also been applied to assess 
hemispheric involvement in acute ischemic stroke 
(AIS): sample entropy was significantly higher in 
left-hemispheric than right-hemispheric strokes, 
implying reduced HRV complexity (and possibly 
heightened sympathetic drive) on the right; these 
differences persisted in daytime segments, sug-
gesting value for lesion lateralization [19]. Beyond 
diagnosis, HRV-based indices have been explored 

to forecast short-term outcomes in the acute phase 
of ischemic stroke [20].

Alongside HRV, electrocardiographic alter-
nans (ECGA) provides a promising non-invasive 
electrophysiological marker of ischemia and ar-
rhythmic risk. ECGA encompasses T-wave (TWA), 
QRS (QRSA), and P-wave alternans (PWA) derived 
from standard ECG. Evidence from the STAFF III 
study – using controlled balloon occlusion – showed 
time-ordered increases in alternans magnitude mea-
sured by correlation methods: PWA within the first 
minute, QRSA by the second, and TWA by the third 
minute of coronary occlusion [21]. ECGA is under 
active evaluation for IHD risk stratification [20]. Al-
though TWA has been examined in IHD and heart 
failure, heterogeneity in protocols and analytics 
complicates interpretation [21]. Some reports sug-
gest that combining TWA with HRV may enhance 
detection of chronic heart failure progression; how-
ever, its prognostic role in IHD requires further 
validation. Recent work argues for concurrent as-
sessment of TWA, QRSA, and PWA to maximize 
diagnostic yield [22].

Beyond physiology, genetic markers–particu-
larly single-nucleotide polymorphisms (SNPs) – in-
creasingly complement traditional risk factors. Pan-
els that integrate SNPs with clinical variables (e.g., 
SCORE, age, angiography) have achieved diag-
nostic accuracies up to 93% [23]. Candidate genes 
implicated in inflammation, lipid metabolism, and 
thrombosis further improve CVD risk prediction, of-
fering value independent of standard predictors and 
showing special relevance in type 2 diabetes, where 
shared metabolic pathways link to cardiovascular 
risk [24]. Incorporating genetics into clinical mod-
els advances individualized prevention and care. 
ECG has long been the mainstay for cardiac as-
sessment, capturing electrical activity via surface 
electrodes [25]. Yet the last decade’s push for con-
tinuous, user-friendly, and affordable monitoring 
has accelerated exploration of alternatives [26]. 
Photoplethysmography (PPG) stands out for simple 
hardware and seamless integration into consumer 
devices, providing a substantially cheaper and more 
convenient path to continuous monitoring in both 
clinical and everyday contexts [27].

While highly accurate, conventional ECG sys-
tems demand clinical oversight, careful electrode 
placement, and periodic calibration–factors that 
raise costs and reduce convenience [25]. Advances 
in microelectronics have miniaturized PPG sensors 
for wearables (wrist, watch, phone, in-ear), broad-
ening access to continuous cardiovascular tracking 
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[28]. Coupled with wireless data transfer and cloud-
based analytics, PPG offers a distinctive blend of af-
fordability, portability, and usability that traditional 
ECG cannot easily match [29].

Machine-learning approaches are highly effec-
tive for detecting IHD-related anomalies. Head-
to-head evaluations of support vector machines, 
artificial neural networks, and deep models report 
accuracies above 90% when robust preprocessing 
and feature selection are applied [30]. Unsupervised 
routines–most notably k-means–are used to flag out-
liers in cardiac datasets, which in turn improves the 
performance of downstream supervised classifiers 
[31]. On ECG signals, deep networks learn discrim-
inative representations that separate normal from 
ischemic patterns with near-perfect performance 
[32]. In imaging, deep learning applied to non-con-
trast CT, echocardiography, and CT angiography 
builds hierarchical encodings of coronary anatomy 
and myocardial motion, capturing subtle lumen-
caliber and wall-motion abnormalities consistent 
with ischemia [33], [34]. Representation-learning 
schemes such as autoencoders and encoder–decod-
er frameworks further compress high-dimensional 
data into interpretable latent features [34]. For label-
sparse or imbalanced cohorts, unsupervised anom-
aly detection segments by similarity and marks 
deviants as anomalies [31], while synthetic overs-
ampling (SMOTE) rebalances classes and often 
boosts SVM performance [30]. ECG-based studies 
frequently exceed 98% accuracy in distinguishing 
IHD or myocardial infarction from healthy controls 
by exploiting minute ST-segment deviations and 
QRS-duration changes–canonical ischemic markers 
[32]. Hybrid architectures that combine convolu-
tional and recurrent layers enhance results by jointly 
modeling spatial morphology and temporal dynam-
ics in cardiovascular datasets [35].

Although the association between heart-rate 
variability (HRV) and cardiovascular disease is 
well established, a practical workflow for screening 
ischemic heart disease (IHD) with consumer-grade 
photoplethysmography (PPG) remains undefined, 
as do the most informative HRV biomarkers obtain-
able from such sensors. To address this, we present 
a pilot using Zhurek–an in-house fingertip PPG de-
vice that records 60-minute signals, computes HRV 
features on board, and transmits encrypted data to 
a cloud store. Bench comparison with a three-lead 
Holter ECG showed clinically acceptable mean bi-
ases: −0.601 bpm for heart rate, +33.1 ms for SDNN, 
and −4.8 ms for RMSSD. With Zhurek, one-hour re-
cordings were obtained from 20 healthy volunteers 

and 20 angiographically confirmed IHD patients 
sampled from a 300-case registry. Eight candidate 
variables were evaluated (SDNN, RMSSD, LF, HF, 
LF/HF, Max_HR, BMI, age). Mann–Whitney tests 
indicated significant group differences for SDNN, 
LF, HF, Max_HR, BMI, and age (p<0.05). Princi-
pal component analysis showed that the first two 
components accounted for 49.5% of variance and 
already separated the cohorts in an unsupervised 
projection. CatBoost feature importance ranked LF 
power highest (~44%), followed by age (~19%), 
with HF also strongly discriminative. Collectively, 
these results show that short, point-of-care PPG ac-
quisitions from an affordable wearable can recover 
key autonomic signatures previously accessible 
mainly via 24-hour Holter monitoring, establishing 
a concrete basis for scalable, low-cost IHD screen-
ing grounded in clearly defined HRV biomarkers.

2. Materials and Methods

The hybrid physiological monitoring platform 
is built for continuous heart-rate variability (HRV) 
assessment to support ambulatory evaluation of au-
tonomic nervous system function. It couples a wear-
able sensor that performs on-device processing with 
secure remote data logging, as shown in Figure 1. 
The architecture brings together three tightly linked 
layers: the sensing and on-device processing layer, 
the communication and storage layer, and the ana-
lytics and classification layer.

In the sensing tier, the Zhurek IoT device ac-
quires fingertip photoplethysmography (PPG) and 
computes core HRV indices in real time. The em-
bedded firmware transforms the raw waveform into 
time-domain features and prepares them for trans-
mission. In particular, it derives heart rate (HR), 
pulse period (PP), SDNN, and RMSSD on device; 
Section 3.2 provides a detailed description of the 
hardware and firmware stack.

Computed HRV features are serialized as JSON 
and sent over Wi-Fi via MQTT. The device publishes 
to the topic zhurek/ppg/hrv, served by a Mosquitto 
2.0 broker on a central server. All links are protected 
with TLS 1.3 and mutual certificate-based authenti-
cation to preserve integrity and confidentiality.

Incoming MQTT payloads are parsed and per-
sisted in a relational SQL database. Each entry car-
ries an accurate timestamp from an on-board real-
time clock synchronized by Network Time Protocol 
(NTP) to maintain cross-device temporal consisten-
cy. For resilience during network outages, the wear-
able simultaneously keeps a local CSV log.
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Figure 1 – System Architecture of the Zhurek HRV Pipeline.

In this pilot, the analytics layer prioritized under-
standing which physiological and clinical variables 
differentiate healthy controls from patients with isch-
emic heart disease (IHD), rather than optimizing pre-
dictive metrics. Mann–Whitney U tests were applied 
to detect distributional shifts, and principal compo-
nent analysis (PCA) was used to explore latent struc-
ture and label-free separation between cohorts. Fea-
ture importance was estimated with CatBoost on the 
40-sample dataset, highlighting variables such as LF 
power, age, HF power, and Max_HR as the strongest 
discriminators. Given the limited sample size, model 
accuracy metrics were intentionally omitted to avoid 
overfitting and misinterpretation; the emphasis was 
on hypothesis generation for larger studies.

In the classification track of the analytics layer, 
stored HRV features can be processed periodically 

with machine-learning models including gradient 
boosting methods (XGBoost, CatBoost), random 
forests (RF), interpretable generalized additive 
models (EBM), and hybrid designs that combine 
deep neural networks (DNN) with least-mean-
square support vector machines (LMSVM). Trained 
on labeled data, these models assign risk levels and 
flag early signs of autonomic dysfunction, enabling 
automated preliminary triage and risk stratification 
in remote-monitoring workflows.

By unifying embedded signal processing, en-
crypted wireless transport, and modular analytics, 
the system supports round-the-clock monitoring 
with structured downstream analysis. Reliance on 
open-source software and off-the-shelf components 
enhances reproducibility and simplifies deployment 
in distributed settings.

                                                                               (а)                                           (b)

Figure 2 – Zhurek Fingertip PPG Sensor: IR LED–Photodiode Layout.
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Zhurek (see Figure 2) is a custom, non-invasive 
wearable for real-time PPG capture and process-
ing. The device integrates a MAX30102 optical 
sensor (DFRobot Gravity: SEN0344) with a Rasp-
berry Pi Zero 2 W (ARM Cortex-A53, 1 GHz, 512 
MB RAM) running Raspberry Pi OS Lite (64-bit). 
Acquisition uses only the infrared channel at 100 
Hz over hardware I²C (address 0x57). The sensor 
resides in a 3D-printed PLA enclosure with an IR-
shielded finger clip and soft elastomer pads to limit 
motion artefacts and ambient light.

All logic is written in Python 3.11. I²C transac-
tions use smbus2. The raw PPG stream undergoes 
baseline correction and moving-average smoothing. 
Cardiac cycles are detected by a derivative-based 
peak finder adapted from HeartPy, followed by 
physiological plausibility checks to remove outli-
ers. RR intervals are derived from peak times; HR, 
SDNN, and RMSSD are computed in 30-s windows 
with a 5-s hop. Frequency-domain indices (LF, HF, 
LF/HF) and Max_HR are computed offline, then 
combined with BMI and age to form an eight-fea-
ture vector.

Each result is packaged as a JSON object and 
published via MQTT; a concurrent CSV log on the 
device acts as a fail-safe. Timestamps are generated 
by an RTC that is periodically synchronized using 
NTP.

The device delivers its best signal quality and 
physiological fidelity at rest. Resting acquisitions 
reduce motion artefacts and yield stable autonomic 
patterns, supporting reliable HRV computation–
consistent with evidence that resting protocols max-
imize accuracy and reproducibility for HRV, gas-
exchange, and metabolic-rate measurements [36], 
[37], [38]. Under these conditions, remote HR and 
HRV derived from PPG closely track ECG-based 
readings [38], providing a robust baseline for IHD 
risk surveillance.

To determine whether wearable ECGs are suit-
able for resting-state HRV, we carried out a 24-hour 
comparison between a clinical three-lead Holter and 
the Polar H10 chest strap. The two systems showed 
close concordance on key time-domain metrics: 
mean heart rate differed from the Holter by 0.601 
bpm (1.77%), SDNN by 33.088 ms (6.77%), and 
RMSSD by 4.778 ms (14.57%). The confidence 
intervals were narrow–e.g., ±1.239 bpm for heart 
rate–supporting the stability and consistency of both 
devices during rest.

To build and validate machine-learning models 
for IHD prediction, HRV data were gathered from 
two distinct sources: a clinical cohort with con-

firmed cardiac disease and a healthy control cohort. 
This split design lets models capture autonomic pat-
terns characteristic of pathology while learning to 
separate them from normal variability in healthy 
subjects.

Both groups were recorded with high-fidelity 
RR-interval sensors to ensure consistent HRV mea-
surement. The clinical set used long-duration, multi-
lead Holter ECGs from participants diagnosed with 
IHD or related disorders. Healthy volunteers were 
monitored in controlled laboratory sessions with ei-
ther a single-lead chest-strap ECG (Polar H10) or 
the custom PPG-based Zhurek device. Although 
ECG is the reference for RR detection, our results 
show that, with appropriate preprocessing and vali-
dation, PPG from Zhurek attains HRV accuracy ad-
equate for ML-driven risk stratification. Using both 
modalities within a unified pipeline mitigates data-
set bias and mirrors real-world wearable cardiovas-
cular monitoring.

HRV records from 20 adult inpatients with veri-
fied cardiovascular disease were obtained at the Re-
search Institute of Cardiology and Internal Diseases 
(Almaty, Kazakhstan). Diagnoses followed institu-
tional clinical protocols under cardiology depart-
ment oversight. Each participant underwent con-
tinuous 24-hour monitoring with diagnostic-grade, 
multi-lead Holter ECG systems that provide high-
resolution RR-interval outputs appropriate for rigor-
ous HRV assessment. The cohort included patients 
across a spectrum of disease severity, from early to 
advanced stages, increasing heterogeneity and sup-
porting the development of models with better ex-
ternal validity. Data were stored as numerical RR-
interval series rather than raw ECG, and core HRV 
variables–heart rate (HR), RR intervals, SDNN, and 
RMSSD–were computed automatically and sup-
plied for downstream analysis.

To characterize baseline autonomic function, 
HRV data were collected from 20 healthy volunteers 
who reported no cardiovascular, neurological, or 
metabolic conditions. To reduce confounding, par-
ticipants refrained from alcohol, tobacco, caffeine, 
and vigorous exercise for at least 24 hours before 
recording and maintained regular sleep (7–8 hours) 
the preceding night. Individuals with acute illness, 
nonadherence to preparation, or excessive signal ar-
tefacts were excluded. Measurements used the Zhu-
rek IoT device, combining a MAX30102 PPG sensor 
with a Raspberry Pi Zero 2 W. The MAX30102 is 
a low-power optical module with integrated red/IR 
LEDs, photodiode, and low-noise AFE with ambi-
ent-light suppression; in this setup only the infrared 
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channel was sampled at 100 Hz over hardware I²C. 
PPG was recorded at the fingertip using a shielded 
spring-loaded clip with elastomer padding to mitigate 
motion artefact. Sessions lasted 60 minutes under 
resting conditions, with a Polar H10 chest-strap ECG 

worn concurrently for validation. Zhurek computed 
HR, inter-beat intervals (IBIs), SDNN, and RMSSD 
in real time using a 30-second rolling window and 
saved all outputs to CSV with high-resolution time-
stamps for subsequent processing.

Figure 3 – Simultaneous Acquisition: Polar H10 ECG and Zhurek Fingertip PPG.

In this pilot, preprocessing began by merging 
two distinct cohorts: a healthy control set and a clin-
ical set with ischemic heart disease (IHD). The con-
trol group included 20 adults aged 18–22. The IHD 
pool was drawn from a registry of exactly 300 con-
firmed cases spanning 18–92 years; for the present 
analysis, only patients aged 18–71 were retained. To 
align temporal resolution across cohorts, a continu-
ous 60-minute segment was extracted from each pa-
tient’s 24-hour Holter ECG, matching the one-hour 
PPG recordings collected from healthy participants 
with the Zhurek device.

Several categorical attributes were numerically 
encoded to streamline analysis. Sex was coded as 
Male = 1, Female = 0. “Bad Habits” was set to 1 for 
respondents reporting alcohol use, smoking, or rou-
tine consumption of energy drinks, and 0 otherwise. 
Familial predisposition was represented by a “Ge-
netic Marker” variable: 0 indicated no known CVD 
in relatives or a family history limited to non-CVD 
conditions; 1 denoted a verified family history of 
cardiovascular disorders (e.g., hypertension, IHD, 
myocardial infarction, stroke); 2 indicated only non-

cardiovascular illnesses among relatives. Surgical 
history (“Operations”) was encoded as 0 for no prior 
procedures, 1 for non-cardiac surgeries, and 2 for 
cardiovascular-related interventions.

The feature set comprised established HRV 
measures–SDNN, pNN50, RMSSD, LF, HF, and 
the LF/HF ratio–reflecting autonomic nervous sys-
tem dynamics [39]. Two additional variables were 
included: Max_HR (the maximum heart rate ob-
served within the recording) and BMI, computed by 
the standard Equation (1) [40]:

(1)

Quality control steps removed entries with miss-
ing fields, malformed values, or extreme outliers. 
Non-numeric strings were normalized to numeric 
form where applicable (including converting deci-
mal commas to periods). These procedures yielded 
a clean, consistent dataset suitable for downstream 
statistical analysis and visualization.
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3. Results

HRV was measured in two cohorts: patients 
with clinically confirmed IHD and healthy controls 
without known cardiovascular disease. All partici-
pants completed standardized recording sessions. 
Summary statistics for each group are reported in 

Table 1 (controls) and Table 2 (IHD). The analy-
sis covers time-domain indices (SDNN, pNN50, 
RMSSD) and frequency-domain indices (LF, HF, 
LF/HF), offering a snapshot of autonomic nervous 
system dynamics [39] and revealing potential con-
trasts in HRV patterns between healthy and IHD 
populations.

Table 1 – Descriptive HRV statistics – healthy control group.

№ SDNN PNN50 RMSSD LF HF LF/HF
1 72.4 24.45 46.4 0.08 0.06 1.39
2 53.93 15.59 37.76 0.06 0.04 1.54
3 39.33 1.71 18.63 0.05 0.03 1.54
4 47.82 5.9 26.55 0.06 0.04 1.53
5 68.21 36.37 58.38 0.06 0.09 0.71
6 65.65 20.89 43.3 0.07 0.07 1.01
7 95.05 40.89 64.28 0.09 0.09 1.02

.……
19 93.95 33.4 58.35 0.1 0.09 1.18
20 33.96 7.7 23.57 0.03 0.03 0.99

Table 2 – HRV summary in the IHD cohort.

№ SDNN PNN50 RMSSD LF HF LF/HF
1 89 36.34 56 0.37 0.35 1.05
2 99 1.26 18 0.30 0.16 1.84
3 80 2.08 22 0.19 0.16 1.20
4 61 1.02 15 0.18 0.12 1.55
5 124 16.67 41 0.44 0.26 1.67
6 69 7.47 31 0.29 0.27 1.08
7 88 2.79 28 0.25 0.19 1.30

.……
19 72 15.63 39 0.23 0.22 1.04
20 59 3.17 23 0.26 0.26 1.00

Figure 4 boxplots indicate clear groupwise dif-
ferences in physiological and HRV features. SDNN, 
LF, and HF are higher in the IHD cohort, reflect-
ing greater overall variability and increased spec-
tral power in both bands. By contrast, RMSSD–an 
index of parasympathetic tone [41]–is higher in 
healthy participants, consistent with greater auto-

nomic flexibility associated with elevated RMSSD 
values [42]. The LF/HF ratio shows similar medians 
across groups. Max_HR is higher among IHD sub-
jects. BMI varies modestly between groups, with a 
higher median in the IHD cohort, in line with the 
recognized contribution of excess body weight to 
cardiovascular risk [43].
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Figure 4 – Groupwise Boxplots of Physiological and HRV Metrics (Healthy vs. IHD).

Continuous physiological and HRV metrics–
BMI, SDNN, RMSSD, pNN50, LF, HF, LF/HF, 
and Max_HR–are summarized for healthy controls 
and IHD patients. As depicted in Figure 5, the Ge-
netic Marker variable is predominantly 0 among 
healthy participants, whereas most IHD cases are 
labeled 1, emphasizing hereditary risk in cardio-
vascular disease [44]. For Operations, controls 
are almost entirely 0, while the IHD cohort shows 
markedly higher rates of both non-cardiac (1) and 
cardiac (2) procedures, reflecting greater clinical 
intervention. The Bad Habits indicator (smoking, 
alcohol, energy drinks) is also more frequent in the 
IHD group than in controls, underscoring modifi-
able lifestyle contributions. Collectively, these 
distributions show that genetic predisposition, sur-
gical history, and behavioral risk factors jointly 
separate the cohorts and provide salient predictors 
for IHD outcome modeling.

The correlation heatmaps, as shown in Figure 
6, illustrate the interrelationships between physi-
ological, behavioral, and HRV features in healthy 
individuals and patients with IHD. The matrices re-
veal distinct patterns between the two cohorts. In the 
healthy group, the heatmap reveals a structured and 
physiologically intuitive set of relationships. Strong 
positive correlations are evident among the time-
domain HRV metrics, specifically SDNN, RMSSD, 
and PNN50. In contrast, the IHD group exhibits a 
more disrupted correlation structure compared to the 
healthy group, which suggests a fundamental loss of 
autonomic coherence. Additionally, lifestyle factors 
such as un-healthy habits show positive correlations 
with impaired HRV in the IHD group, whereas they 
exhibit negative correlations with HRV features in 
the healthy group. As shown in the matrix, the diag-
onal line of red cells corresponds to perfect self-cor-
relation, where each variable is perfectly correlated 
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with itself. These heatmaps offer more than just a 
summary of feature relationships; they visualize the 
integrity of the autonomic nervous system. The pat-
tern in the healthy group reflects physiological har-

mony and adaptability, while the disrupted pattern 
in the IHD group visually rep-resents the autonomic 
dysregulation and loss of resilience that is a hall-
mark of cardiovascular disease. 

Figure 5 – Categorical Risk Factors by Group (Genetic Marker, Operations, Bad Habits).

Figure 6 – Feature Correlation Heatmaps (Healthy vs. IHD)

Table 3 summarizes distributional comparisons 
between healthy controls and IHD patients. Sig-
nificant group differences (p < 0.05) were observed 
for BMI, SDNN, LF, HF, Max_HR, and Age, in-
dicating that autonomic activity and cardiovascu-

lar dynamics provide strong discriminatory signal. 
By contrast, PNN50, RMSSD, and the LF/HF ratio 
were not individually significant, though they may 
still add value in multivariate models or clinical in-
terpretation.

Table 3 – Mann–Whitney u comparison of physiological feature distributions (Healthy vs. IHD).

Feature p-value Significance
BMI 0.042464 Yes

SDNN 0.025625 Yes
LF 6.49e-08 Yes
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Feature p-value Significance
HF 9.47e-08 Yes

PNN50 0.072032 No
RMSSD 0.126377 No
LF/HF 0.432537 No

Max_HR 0.008343 Yes
Age 9.34e-07 Yes

Continuation of the table

To probe cohort-level physiology, we applied 
principal component analysis. The first two compo-
nents accounted for ~49.5% of the variance (PC1: 
27.3%, PC2: 22.2%). As shown in Figure 7, the 
PC1–PC2 projection exhibits a clear separation 
between groups–healthy participants cluster apart 
from IHD cases–suggesting that the selected physi-
ological and categorical features contain sufficient 
signal for unsupervised differentiation and motivat-

ing their use in downstream supervised modeling 
and feature-importance analysis.

As part of the exploratory workflow, we in-
spected CatBoost feature importances to see which 
physiological and clinical variables most strongly 
drive group separation. Model accuracy was not 
the objective at this stage; the goal was to flag the 
variables most promising for differentiating healthy 
participants from patients with IHD.

Figure 7 – Unsupervised PCA Projection of HRV Features  
(Healthy vs. IHD)

As shown in Figure 8, SHAP analysis of the Cat-
Boost model ranks LF (low-frequency HRV power) 
as the top contributor (highest mean SHAP value), 
with HF (high-frequency power) next–underscoring 
the central role of autonomic dynamics. Addition-

al, smaller but non-trivial contributions come from 
Operations, Genetic_marker, and PNN50, suggest-
ing that surgical history, hereditary risk, and beat-
to-beat variability also aid in distinguishing the two 
cohorts.
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Figure 8 – Unsupervised PCA Projection of HRV Features
 (Healthy vs. IHD)

To gauge how much the model depends on 
physiology alone, we re-ran CatBoost on the pilot 
dataset after removing the age variable. Because 
no hold-out set was used, the aim was not to score 
accuracy but to probe which inputs drive the 
model’s internal decisions. As shown in Figure 
9, SHAP analysis identifies five leading contribu-
tors to IHD prediction. The low-frequency (LF) 
HRV component shows the largest mean absolute 

SHAP value, indicating the strongest influence, 
followed by the high-frequency (HF) component 
and Age, pointing to major roles for autonomic 
dynamics and age-related effects. Genetic_mark-
er and Operations contribute less overall but still 
affect certain cases. Force-plot views further il-
lustrate that higher LF/HF ratios or greater age 
tend to push individual estimates toward the 
“Ischaemia” class.

Figure 9 – CatBoost Feature Importance (physiology-only model).
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4. Conclusions

The principal contribution of this pilot is an 
end-to-end system and protocol for scalable, ambu-
latory screening of ischemic heart disease (IHD). 
We developed and validated Zhurek, a custom, 
non-invasive fingertip PPG sensor that enables 
rapid, point-of-care acquisition. A key design ele-
ment is showing that a single one-hour recording 
is sufficient to capture diagnostically meaningful 
autonomic signatures. Hour-long sessions were 
obtained from 20 healthy volunteers aged 18–22 
and 20 angiographically confirmed IHD patients, 
and eight features were derived: SDNN, RMSSD, 
LF, HF, LF/HF, Max_HR, BMI, and age. Against 
a three-lead Holter ECG, the system demonstrated 
clinically acceptable mean absolute errors–0.601 
bpm for heart rate, 33.1 ms for SDNN, and 4.8 ms 
for RMSSD.

Nonparametric testing (Mann–Whitney) in-
dicated significant between-group differences for 
SDNN, LF, HF, Max_HR, BMI, and age (p < 0.05). 
The first two principal components explained 
49.5% of total variance and already separated co-
horts without labels, supporting the informative-
ness of the chosen variables. Methodologically, the 
study used machine learning not to overfit predic-
tions on a small sample but to conduct exploratory 
ranking of short-duration biomarkers. CatBoost 
importance scores placed LF at ~44% of total 
contribution, age at ~19%, followed by HF, with 
smaller effects for Max_HR and RMSSD. Togeth-
er with the PCA separation, this pinpoints which 
markers carry the greatest diagnostic weight and 
shows that brief Zhurek acquisitions can recover 
autonomic signals traditionally accessed via 24-
hour Holter, laying the groundwork for affordable, 
large-scale screening.

Incorporating SHAP improved the transparency 
of the Zhurek–CatBoost pipeline and aligns with 
emerging explainability standards; at deployment 
scale, individualized SHAP profiles could inform 
genuinely personalized prevention.

Several caveats qualify these findings. Data mo-
dalities differed by cohort–healthy participants were 
recorded with optical PPG, whereas IHD patients 

were recorded with ECG–introducing potential sig-
nal-quality biases. The control group’s narrow age 
range contrasts with age being a strong discrimina-
tor, raising the risk of confounding. The sample size 
(n = 40) is limited; therefore, formal performance 
metrics were intentionally omitted to avoid over-
interpretation.

Future work will enlarge and age-diversify the 
cohorts–especially the healthy group–and stan-
dardize acquisition by collecting parallel PPG and 
single-lead ECG from all participants. A multi-
center longitudinal study is planned to test the 
prognostic utility of short-term markers and to 
confirm reproducibility. The roadmap also includes 
adding nonlinear HRV measures and expanding 
automated analysis to enable reliable ambulatory 
risk stratification. These steps should enhance the 
clinical relevance of the Zhurek approach and ac-
celerate the shift from reactive care to proactive 
IHD prevention.
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