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CVD PREDICTION FROM HRV DERIVED
FROM WEARABLE PPG

Abstract. Cardiovascular disease is the leading global cause of death; ischemic heart disease (IHD)
is its most common and lethal form, motivating scalable, non-invasive screening. We tested whether a
single 60-minute photoplethysmography (PPG) recording from the Zhurek fingertip wearable can dis-
tinguish healthy autonomic control from IHD-related dysregulation. Agreement with a three-lead Holter
reference was clinically acceptable (HR —0.601 bpm; SDNN +33.1 ms; RMSSD —4.8 ms). Forty hour-
long sessions were analyzed (20 healthy, 18-22 years; 20 angiography-confirmed IHD) using eight HRV/
demographic features. Mann—Whitney tests showed significant differences for SDNN, LF, HF, Max_HR,
BMI, and age (p <0.05), and a two-component PCA (49.5% variance) separated cohorts without labels.
SHAP for a CatBoost model highlighted LF and age as strongest positive contributors and HF as protec-
tive. Thus, one-hour PPG preserves diagnostically useful autonomic signatures, enabling ~ 24x shorter
monitoring than Holter and supporting scalable ambulatory IHD risk stratification.

Keywords: CVD, IHD, HRV, Machine learning, PPG, wearable sensor.

1. Introduction

Cardiovascular diseases (CVDs) remain the
top cause of mortality globally. WHO estimates in-
dicate that in 2019, 17.9 million people died from
CVDs—32% of all deaths—with heart attacks and
strokes accounting for 85% of these losses. Among
the 17 million premature deaths (under 70) from
non-communicable diseases that year, 38% were
attributable to CVDs [1]. Ischemic heart disease
(IHD) is among the most prevalent CVD entities and
a principal driver of mortality [2]. In Kazakhstan,
2022 statistics show circulatory diseases as the most
widespread among adults (3,962.5 per 100,000), of
which THD contributes 560.7 per 100,000, under-
scoring its substantial share within cardiovascular
morbidity [3].

IHD imposes a heavy clinical and economic
burden, substantially elevating both mortality and
morbidity worldwide [4]. Coronary artery disease
(CAD)-predominantly a consequence of atheroscle-
rosis—is the leading cause of IHD and culminates
in myocardial ischemia. The core pathophysiolog-
ic mechanism is obstructive atherosclerosis of the
coronary vessels, which compromises myocardial
perfusion [5]. In view of rising pressure on health
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systems, there is a pressing need for early, non-in-
vasive diagnostic strategies that can flag IHD before
irreversible outcomes such as myocardial infarction
or chronic heart failure (CHF) occur [6].

Heart rate variability (HRV)-the beat-to-beat
fluctuation in cardiac cycle duration [7]-is a non-
invasive rhythm-based marker that yields clinically
useful information about overall physiological status
[8]. HRV indexes the heart’s adaptive capacity and
an individual’s ability to respond to environmental
challenges via compensatory mechanisms [9]. It is
shaped by autonomic inputs—particularly parasym-
pathetic tone—while reflecting the joint activity of
sympathetic and parasympathetic branches. De-
pressed HRV has been linked to adverse endpoints
including myocardial infarction, progression of ath-
erosclerosis, heart failure, IHD, and sudden cardiac
death [10]. Accordingly, HRV analysis is central to
evaluating autonomic nervous system (ANS) func-
tion [11]. Conventional coronary assessment tools
are frequently costly, invasive, and suboptimal for
timely detection of evolving ischemia [12]. Al-
though diagnostic angiography is among the most
definitive techniques for identifying cardiac abnor-
malities, it carries high expense, potential complica-
tions, and requires specialized expertise; traditional
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workflows can be time-intensive, error-prone, and
resource-heavy, risking misclassification and higher
costs [13]. This motivates a shift toward reliable,
non-invasive, early detection methods—HRV-based
approaches being a prime candidate.

CVDs continue to dominate global morbidity
and mortality statistics, reinforcing the importance
of early identification in high-risk groups and the
development of effective preventive and therapeutic
interventions. Recent efforts emphasize multifac-
torial risk models that fuse physiological metrics,
lifestyle variables, and medical history to improve
predictive performance and enable personalization
[14]. HRV—the variability in RR (NN) intervals—is
a widely used non-invasive indicator of cardiovas-
cular status [15]. In IHD, reductions in time-domain
indices (SDNN, RMSSD, pNN50) and alterations
in the LF/HF ratio derived from frequency-domain
analysis (FFT of RR intervals) associate with myo-
cardial injury and higher adverse-event risk; an LF/
HF imbalance signals disrupted autonomic control
during ischemic episodes. This review consolidates
key HRV features and highlights their clinical util-
ity in monitoring and managing IHD [6], [16].

Patients with IHD and arrhythmias generally
exhibit lower HRV than healthy controls. Time-do-
main measures such as SDNN, SDANN, RMSSD,
pNNS50, and the triangular index, together with non-
linear descriptors (o, al, a2, SD1, SD2, Approxi-
mate Entropy, Sample Entropy), are markedly di-
minished in these populations [17]. These patterns
reflect impaired autonomic regulation and support
the role of HRV analytics in tracking cardiac func-
tion and disease trajectory in IHD [15].

In atrial fibrillation (AF), HRV—defined as
fluctuations in ventricular response intervals—is
not random; its nonlinear structure, especially
multiscale entropy (MSE), carries clinical mean-
ing. Numerous studies link HRV parameters to
ischemic stroke risk in AF, and MSE of HRV has
been proposed as a predictor in this group [18].
Notably, higher sample-entropy values at specific
time scales from 24-hour Holter data correlate with
increased stroke likelihood in AF patients without
prior stroke. HRV has also been applied to assess
hemispheric involvement in acute ischemic stroke
(AIS): sample entropy was significantly higher in
left-hemispheric than right-hemispheric strokes,
implying reduced HRV complexity (and possibly
heightened sympathetic drive) on the right; these
differences persisted in daytime segments, sug-
gesting value for lesion lateralization [19]. Beyond
diagnosis, HRV-based indices have been explored

to forecast short-term outcomes in the acute phase
of ischemic stroke [20].

Alongside HRYV, electrocardiographic alter-
nans (ECGA) provides a promising non-invasive
electrophysiological marker of ischemia and ar-
rhythmic risk. ECGA encompasses T-wave (TWA),
QRS (QRSA), and P-wave alternans (PWA) derived
from standard ECG. Evidence from the STAFF III
study — using controlled balloon occlusion — showed
time-ordered increases in alternans magnitude mea-
sured by correlation methods: PWA within the first
minute, QRSA by the second, and TWA by the third
minute of coronary occlusion [21]. ECGA is under
active evaluation for IHD risk stratification [20]. Al-
though TWA has been examined in IHD and heart
failure, heterogeneity in protocols and analytics
complicates interpretation [21]. Some reports sug-
gest that combining TWA with HRV may enhance
detection of chronic heart failure progression; how-
ever, its prognostic role in IHD requires further
validation. Recent work argues for concurrent as-
sessment of TWA, QRSA, and PWA to maximize
diagnostic yield [22].

Beyond physiology, genetic markers—particu-
larly single-nucleotide polymorphisms (SNPs) — in-
creasingly complement traditional risk factors. Pan-
els that integrate SNPs with clinical variables (e.g.,
SCORE, age, angiography) have achieved diag-
nostic accuracies up to 93% [23]. Candidate genes
implicated in inflammation, lipid metabolism, and
thrombosis further improve CVD risk prediction, of-
fering value independent of standard predictors and
showing special relevance in type 2 diabetes, where
shared metabolic pathways link to cardiovascular
risk [24]. Incorporating genetics into clinical mod-
els advances individualized prevention and care.
ECG has long been the mainstay for cardiac as-
sessment, capturing electrical activity via surface
electrodes [25]. Yet the last decade’s push for con-
tinuous, user-friendly, and affordable monitoring
has accelerated exploration of alternatives [26].
Photoplethysmography (PPG) stands out for simple
hardware and seamless integration into consumer
devices, providing a substantially cheaper and more
convenient path to continuous monitoring in both
clinical and everyday contexts [27].

While highly accurate, conventional ECG sys-
tems demand clinical oversight, careful electrode
placement, and periodic calibration—factors that
raise costs and reduce convenience [25]. Advances
in microelectronics have miniaturized PPG sensors
for wearables (wrist, watch, phone, in-ear), broad-
ening access to continuous cardiovascular tracking
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[28]. Coupled with wireless data transfer and cloud-
based analytics, PPG offers a distinctive blend of af-
fordability, portability, and usability that traditional
ECG cannot easily match [29].

Machine-learning approaches are highly effec-
tive for detecting IHD-related anomalies. Head-
to-head evaluations of support vector machines,
artificial neural networks, and deep models report
accuracies above 90% when robust preprocessing
and feature selection are applied [30]. Unsupervised
routines—most notably k-means—are used to flag out-
liers in cardiac datasets, which in turn improves the
performance of downstream supervised classifiers
[31]. On ECG signals, deep networks learn discrim-
inative representations that separate normal from
ischemic patterns with near-perfect performance
[32]. In imaging, deep learning applied to non-con-
trast CT, echocardiography, and CT angiography
builds hierarchical encodings of coronary anatomy
and myocardial motion, capturing subtle lumen-
caliber and wall-motion abnormalities consistent
with ischemia [33], [34]. Representation-learning
schemes such as autoencoders and encoder—decod-
er frameworks further compress high-dimensional
data into interpretable latent features [34]. For label-
sparse or imbalanced cohorts, unsupervised anom-
aly detection segments by similarity and marks
deviants as anomalies [31], while synthetic overs-
ampling (SMOTE) rebalances classes and often
boosts SVM performance [30]. ECG-based studies
frequently exceed 98% accuracy in distinguishing
IHD or myocardial infarction from healthy controls
by exploiting minute ST-segment deviations and
QRS-duration changes—canonical ischemic markers
[32]. Hybrid architectures that combine convolu-
tional and recurrent layers enhance results by jointly
modeling spatial morphology and temporal dynam-
ics in cardiovascular datasets [35].

Although the association between heart-rate
variability (HRV) and cardiovascular disease is
well established, a practical workflow for screening
ischemic heart disease (IHD) with consumer-grade
photoplethysmography (PPG) remains undefined,
as do the most informative HRV biomarkers obtain-
able from such sensors. To address this, we present
a pilot using Zhurek—an in-house fingertip PPG de-
vice that records 60-minute signals, computes HRV
features on board, and transmits encrypted data to
a cloud store. Bench comparison with a three-lead
Holter ECG showed clinically acceptable mean bi-
ases: —0.601 bpm for heart rate, +33.1 ms for SDNN,
and —4.8 ms for RMSSD. With Zhurek, one-hour re-
cordings were obtained from 20 healthy volunteers
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and 20 angiographically confirmed IHD patients
sampled from a 300-case registry. Eight candidate
variables were evaluated (SDNN, RMSSD, LF, HF,
LF/HF, Max_ HR, BMI, age). Mann—Whitney tests
indicated significant group differences for SDNN,
LF, HF, Max_HR, BMI, and age (p<0.05). Princi-
pal component analysis showed that the first two
components accounted for 49.5% of variance and
already separated the cohorts in an unsupervised
projection. CatBoost feature importance ranked LF
power highest (~44%), followed by age (~19%),
with HF also strongly discriminative. Collectively,
these results show that short, point-of-care PPG ac-
quisitions from an affordable wearable can recover
key autonomic signatures previously accessible
mainly via 24-hour Holter monitoring, establishing
a concrete basis for scalable, low-cost IHD screen-
ing grounded in clearly defined HRV biomarkers.

2. Materials and Methods

The hybrid physiological monitoring platform
is built for continuous heart-rate variability (HRV)
assessment to support ambulatory evaluation of au-
tonomic nervous system function. It couples a wear-
able sensor that performs on-device processing with
secure remote data logging, as shown in Figure 1.
The architecture brings together three tightly linked
layers: the sensing and on-device processing layer,
the communication and storage layer, and the ana-
lytics and classification layer.

In the sensing tier, the Zhurek IoT device ac-
quires fingertip photoplethysmography (PPG) and
computes core HRV indices in real time. The em-
bedded firmware transforms the raw waveform into
time-domain features and prepares them for trans-
mission. In particular, it derives heart rate (HR),
pulse period (PP), SDNN, and RMSSD on device;
Section 3.2 provides a detailed description of the
hardware and firmware stack.

Computed HRV features are serialized as JSON
and sent over Wi-Fi via MQTT. The device publishes
to the topic zhurek/ppg/hrv, served by a Mosquitto
2.0 broker on a central server. All links are protected
with TLS 1.3 and mutual certificate-based authenti-
cation to preserve integrity and confidentiality.

Incoming MQTT payloads are parsed and per-
sisted in a relational SQL database. Each entry car-
ries an accurate timestamp from an on-board real-
time clock synchronized by Network Time Protocol
(NTP) to maintain cross-device temporal consisten-
cy. For resilience during network outages, the wear-
able simultaneously keeps a local CSV log.
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Figure 1 — System Architecture of the Zhurek HRV Pipeline.

In this pilot, the analytics layer prioritized under-
standing which physiological and clinical variables
differentiate healthy controls from patients with isch-
emic heart disease (IHD), rather than optimizing pre-
dictive metrics. Mann—Whitney U tests were applied
to detect distributional shifts, and principal compo-
nent analysis (PCA) was used to explore latent struc-
ture and label-free separation between cohorts. Fea-
ture importance was estimated with CatBoost on the
40-sample dataset, highlighting variables such as LF
power, age, HF power, and Max_HR as the strongest
discriminators. Given the limited sample size, model
accuracy metrics were intentionally omitted to avoid
overfitting and misinterpretation; the emphasis was
on hypothesis generation for larger studies.

In the classification track of the analytics layer,
stored HRV features can be processed periodically

@

with machine-learning models including gradient
boosting methods (XGBoost, CatBoost), random
forests (RF), interpretable generalized additive
models (EBM), and hybrid designs that combine
deep neural networks (DNN) with least-mean-
square support vector machines (LMSVM). Trained
on labeled data, these models assign risk levels and
flag early signs of autonomic dysfunction, enabling
automated preliminary triage and risk stratification
in remote-monitoring workflows.

By unifying embedded signal processing, en-
crypted wireless transport, and modular analytics,
the system supports round-the-clock monitoring
with structured downstream analysis. Reliance on
open-source software and off-the-shelf components
enhances reproducibility and simplifies deployment
in distributed settings.

Infrared LED Photodiode
gh
(b)

Figure 2 — Zhurek Fingertip PPG Sensor: IR LED-Photodiode Layout.
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Zhurek (see Figure 2) is a custom, non-invasive
wearable for real-time PPG capture and process-
ing. The device integrates a MAX30102 optical
sensor (DFRobot Gravity: SEN0344) with a Rasp-
berry Pi Zero 2 W (ARM Cortex-A53, 1 GHz, 512
MB RAM) running Raspberry Pi OS Lite (64-bit).
Acquisition uses only the infrared channel at 100
Hz over hardware I?C (address 0x57). The sensor
resides in a 3D-printed PLA enclosure with an IR-
shielded finger clip and soft elastomer pads to limit
motion artefacts and ambient light.

All logic is written in Python 3.11. I*C transac-
tions use smbus2. The raw PPG stream undergoes
baseline correction and moving-average smoothing.
Cardiac cycles are detected by a derivative-based
peak finder adapted from HeartPy, followed by
physiological plausibility checks to remove outli-
ers. RR intervals are derived from peak times; HR,
SDNN, and RMSSD are computed in 30-s windows
with a 5-s hop. Frequency-domain indices (LF, HF,
LF/HF) and Max_HR are computed offline, then
combined with BMI and age to form an eight-fea-
ture vector.

Each result is packaged as a JSON object and
published via MQTT; a concurrent CSV log on the
device acts as a fail-safe. Timestamps are generated
by an RTC that is periodically synchronized using
NTP.

The device delivers its best signal quality and
physiological fidelity at rest. Resting acquisitions
reduce motion artefacts and yield stable autonomic
patterns, supporting reliable HRV computation—
consistent with evidence that resting protocols max-
imize accuracy and reproducibility for HRV, gas-
exchange, and metabolic-rate measurements [36],
[37], [38]. Under these conditions, remote HR and
HRYV derived from PPG closely track ECG-based
readings [38], providing a robust baseline for IHD
risk surveillance.

To determine whether wearable ECGs are suit-
able for resting-state HRV, we carried out a 24-hour
comparison between a clinical three-lead Holter and
the Polar H10 chest strap. The two systems showed
close concordance on key time-domain metrics:
mean heart rate differed from the Holter by 0.601
bpm (1.77%), SDNN by 33.088 ms (6.77%), and
RMSSD by 4.778 ms (14.57%). The confidence
intervals were narrow—e.g., +£1.239 bpm for heart
rate—supporting the stability and consistency of both
devices during rest.

To build and validate machine-learning models
for IHD prediction, HRV data were gathered from
two distinct sources: a clinical cohort with con-
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firmed cardiac disease and a healthy control cohort.
This split design lets models capture autonomic pat-
terns characteristic of pathology while learning to
separate them from normal variability in healthy
subjects.

Both groups were recorded with high-fidelity
RR-interval sensors to ensure consistent HRV mea-
surement. The clinical set used long-duration, multi-
lead Holter ECGs from participants diagnosed with
IHD or related disorders. Healthy volunteers were
monitored in controlled laboratory sessions with ei-
ther a single-lead chest-strap ECG (Polar H10) or
the custom PPG-based Zhurek device. Although
ECG is the reference for RR detection, our results
show that, with appropriate preprocessing and vali-
dation, PPG from Zhurek attains HRV accuracy ad-
equate for ML-driven risk stratification. Using both
modalities within a unified pipeline mitigates data-
set bias and mirrors real-world wearable cardiovas-
cular monitoring.

HRYV records from 20 adult inpatients with veri-
fied cardiovascular disease were obtained at the Re-
search Institute of Cardiology and Internal Diseases
(Almaty, Kazakhstan). Diagnoses followed institu-
tional clinical protocols under cardiology depart-
ment oversight. Each participant underwent con-
tinuous 24-hour monitoring with diagnostic-grade,
multi-lead Holter ECG systems that provide high-
resolution RR-interval outputs appropriate for rigor-
ous HRV assessment. The cohort included patients
across a spectrum of disease severity, from early to
advanced stages, increasing heterogeneity and sup-
porting the development of models with better ex-
ternal validity. Data were stored as numerical RR-
interval series rather than raw ECG, and core HRV
variables—heart rate (HR), RR intervals, SDNN, and
RMSSD-were computed automatically and sup-
plied for downstream analysis.

To characterize baseline autonomic function,
HRYV data were collected from 20 healthy volunteers
who reported no cardiovascular, neurological, or
metabolic conditions. To reduce confounding, par-
ticipants refrained from alcohol, tobacco, caffeine,
and vigorous exercise for at least 24 hours before
recording and maintained regular sleep (7-8 hours)
the preceding night. Individuals with acute illness,
nonadherence to preparation, or excessive signal ar-
tefacts were excluded. Measurements used the Zhu-
rek IoT device, combining a MAX30102 PPG sensor
with a Raspberry Pi Zero 2 W. The MAX30102 is
a low-power optical module with integrated red/IR
LEDs, photodiode, and low-noise AFE with ambi-
ent-light suppression; in this setup only the infrared
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channel was sampled at 100 Hz over hardware I°C.
PPG was recorded at the fingertip using a shielded
spring-loaded clip with elastomer padding to mitigate
motion artefact. Sessions lasted 60 minutes under
resting conditions, with a Polar H10 chest-strap ECG

Polar ECG signal

__ Zhurek loT device
(PPG)

worn concurrently for validation. Zhurek computed
HR, inter-beat intervals (IBIs), SDNN, and RMSSD
in real time using a 30-second rolling window and
saved all outputs to CSV with high-resolution time-
stamps for subsequent processing.

Zhurek PPG signal

NINIW)

Figure 3 — Simultaneous Acquisition: Polar H10 ECG and Zhurek Fingertip PPG.

In this pilot, preprocessing began by merging
two distinct cohorts: a healthy control set and a clin-
ical set with ischemic heart disease (IHD). The con-
trol group included 20 adults aged 18-22. The IHD
pool was drawn from a registry of exactly 300 con-
firmed cases spanning 18-92 years; for the present
analysis, only patients aged 18—71 were retained. To
align temporal resolution across cohorts, a continu-
ous 60-minute segment was extracted from each pa-
tient’s 24-hour Holter ECG, matching the one-hour
PPG recordings collected from healthy participants
with the Zhurek device.

Several categorical attributes were numerically
encoded to streamline analysis. Sex was coded as
Male = 1, Female = 0. “Bad Habits” was set to 1 for
respondents reporting alcohol use, smoking, or rou-
tine consumption of energy drinks, and 0 otherwise.
Familial predisposition was represented by a “Ge-
netic Marker” variable: 0 indicated no known CVD
in relatives or a family history limited to non-CVD
conditions; 1 denoted a verified family history of
cardiovascular disorders (e.g., hypertension, IHD,
myocardial infarction, stroke); 2 indicated only non-

cardiovascular illnesses among relatives. Surgical
history (“Operations”) was encoded as 0 for no prior
procedures, 1 for non-cardiac surgeries, and 2 for
cardiovascular-related interventions.

The feature set comprised established HRV
measures—SDNN, pNN50, RMSSD, LF, HF, and
the LF/HF ratio—reflecting autonomic nervous sys-
tem dynamics [39]. Two additional variables were
included: Max HR (the maximum heart rate ob-
served within the recording) and BMI, computed by
the standard Equation (1) [40]:

_ Weight (kg)

EMI = 5
Height (m)?

(D)

Quality control steps removed entries with miss-
ing fields, malformed values, or extreme outliers.
Non-numeric strings were normalized to numeric
form where applicable (including converting deci-
mal commas to periods). These procedures yielded
a clean, consistent dataset suitable for downstream
statistical analysis and visualization.
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3. Results

HRV was measured in two cohorts: patients
with clinically confirmed IHD and healthy controls
without known cardiovascular disease. All partici-
pants completed standardized recording sessions.
Summary statistics for each group are reported in

Table 1 — Descriptive HRV statistics — healthy control group.

Table 1 (controls) and Table 2 (IHD). The analy-
sis covers time-domain indices (SDNN, pNNS50,
RMSSD) and frequency-domain indices (LF, HF,
LF/HF), offering a snapshot of autonomic nervous
system dynamics [39] and revealing potential con-
trasts in HRV patterns between healthy and IHD
populations.

Ne SDNN PNN50 RMSSD LF HF LF/HF
1 72.4 24.45 46.4 0.08 0.06 1.39
2 53.93 15.59 37.76 0.06 0.04 1.54
3 39.33 1.71 18.63 0.05 0.03 1.54
4 47.82 59 26.55 0.06 0.04 1.53
5 68.21 36.37 58.38 0.06 0.09 0.71
6 65.65 20.89 433 0.07 0.07 1.01
7 95.05 40.89 64.28 0.09 0.09 1.02
19 93.95 33.4 58.35 0.1 0.09 1.18

20 33.96 7.7 23.57 0.03 0.03 0.99

Table 2 — HRV summary in the IHD cohort.

Ne SDNN PNNS50 RMSSD LF HF LF/HF
1 89 36.34 56 0.37 0.35 1.05
2 99 1.26 18 0.30 0.16 1.84
3 80 2.08 22 0.19 0.16 1.20
4 61 1.02 15 0.18 0.12 1.55
5 124 16.67 41 0.44 0.26 1.67
6 69 7.47 31 0.29 0.27 1.08
7 88 2.79 28 0.25 0.19 1.30
19 72 15.63 39 0.23 0.22 1.04

20 59 3.17 23 0.26 0.26 1.00

Figure 4 boxplots indicate clear groupwise dif-
ferences in physiological and HRV features. SDNN,
LF, and HF are higher in the IHD cohort, reflect-
ing greater overall variability and increased spec-
tral power in both bands. By contrast, RMSSD-an
index of parasympathetic tone [41]-is higher in
healthy participants, consistent with greater auto-
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nomic flexibility associated with elevated RMSSD
values [42]. The LF/HF ratio shows similar medians
across groups. Max_HR is higher among [HD sub-
jects. BMI varies modestly between groups, with a
higher median in the IHD cohort, in line with the
recognized contribution of excess body weight to
cardiovascular risk [43].
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Figure 4 — Groupwise Boxplots of Physiological and HRV Metrics (Healthy vs. IHD).

Continuous physiological and HRV metrics—
BMI, SDNN, RMSSD, pNN50, LF, HF, LF/HF,
and Max_HR-are summarized for healthy controls
and IHD patients. As depicted in Figure 5, the Ge-
netic Marker variable is predominantly 0 among
healthy participants, whereas most IHD cases are
labeled 1, emphasizing hereditary risk in cardio-
vascular disease [44]. For Operations, controls
are almost entirely 0, while the IHD cohort shows
markedly higher rates of both non-cardiac (1) and
cardiac (2) procedures, reflecting greater clinical
intervention. The Bad Habits indicator (smoking,
alcohol, energy drinks) is also more frequent in the
IHD group than in controls, underscoring modifi-
able lifestyle contributions. Collectively, these
distributions show that genetic predisposition, sur-
gical history, and behavioral risk factors jointly
separate the cohorts and provide salient predictors
for IHD outcome modeling.

The correlation heatmaps, as shown in Figure
6, illustrate the interrelationships between physi-
ological, behavioral, and HRV features in healthy
individuals and patients with IHD. The matrices re-
veal distinct patterns between the two cohorts. In the
healthy group, the heatmap reveals a structured and
physiologically intuitive set of relationships. Strong
positive correlations are evident among the time-
domain HRV metrics, specifically SDNN, RMSSD,
and PNN50. In contrast, the IHD group exhibits a
more disrupted correlation structure compared to the
healthy group, which suggests a fundamental loss of
autonomic coherence. Additionally, lifestyle factors
such as un-healthy habits show positive correlations
with impaired HRV in the IHD group, whereas they
exhibit negative correlations with HRV features in
the healthy group. As shown in the matrix, the diag-
onal line of red cells corresponds to perfect self-cor-
relation, where each variable is perfectly correlated
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with itself. These heatmaps offer more than just a
summary of feature relationships; they visualize the
integrity of the autonomic nervous system. The pat-
tern in the healthy group reflects physiological har-

Genetic Marker by Group

Dperations by Group

mony and adaptability, while the disrupted pattern
in the IHD group visually rep-resents the autonomic
dysregulation and loss of resilience that is a hall-
mark of cardiovascular disease.
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Figure 6 — Feature Correlation Heatmaps (Healthy vs. IHD)

Table 3 summarizes distributional comparisons
between healthy controls and THD patients. Sig-
nificant group differences (p < 0.05) were observed
for BMI, SDNN, LF, HF, Max HR, and Age, in-
dicating that autonomic activity and cardiovascu-

lar dynamics provide strong discriminatory signal.
By contrast, PNN50, RMSSD, and the LF/HF ratio
were not individually significant, though they may
still add value in multivariate models or clinical in-
terpretation.

Table 3 — Mann—Whitney u comparison of physiological feature distributions (Healthy vs. IHD).

Feature P-VALUE Significance
BMI 0.042464 Yes
SDNN 0.025625 Yes
LF 6.49¢-08 Yes
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Continuation of the table

Feature P-VALUE Significance
HF 9.47e-08 Yes
PNN50 0.072032 No
RMSSD 0.126377 No
LF/HF 0.432537 No
Max_HR 0.008343 Yes
Age 9.34e-07 Yes

To probe cohort-level physiology, we applied
principal component analysis. The first two compo-
nents accounted for ~49.5% of the variance (PCl:
27.3%, PC2: 22.2%). As shown in Figure 7, the
PC1-PC2 projection exhibits a clear separation
between groups—healthy participants cluster apart
from IHD cases—suggesting that the selected physi-
ological and categorical features contain sufficient
signal for unsupervised differentiation and motivat-

ing their use in downstream supervised modeling
and feature-importance analysis.

As part of the exploratory workflow, we in-
spected CatBoost feature importances to see which
physiological and clinical variables most strongly
drive group separation. Model accuracy was not
the objective at this stage; the goal was to flag the
variables most promising for differentiating healthy
participants from patients with IHD.

Principal Component Analysis (Unsupervised)
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Figure 7 — Unsupervised PCA Projection of HRV Features
(Healthy vs. IHD)

As shown in Figure 8, SHAP analysis of the Cat-
Boost model ranks LF (low-frequency HRV power)
as the top contributor (highest mean SHAP value),
with HF (high-frequency power) next—underscoring
the central role of autonomic dynamics. Addition-

al, smaller but non-trivial contributions come from
Operations, Genetic_marker, and PNN50, suggest-
ing that surgical history, hereditary risk, and beat-
to-beat variability also aid in distinguishing the two
cohorts.
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Top 5 Most Importance Features (CatBoost)
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Figure 8 — Unsupervised PCA Projection of HRV Features
(Healthy vs. IHD)

To gauge how much the model depends on
physiology alone, we re-ran CatBoost on the pilot
dataset after removing the age variable. Because
no hold-out set was used, the aim was not to score
accuracy but to probe which inputs drive the
model’s internal decisions. As shown in Figure
9, SHAP analysis identifies five leading contribu-
tors to IHD prediction. The low-frequency (LF)
HRYV component shows the largest mean absolute

SHAP value, indicating the strongest influence,
followed by the high-frequency (HF) component
and Age, pointing to major roles for autonomic
dynamics and age-related effects. Genetic_mark-
er and Operations contribute less overall but still
affect certain cases. Force-plot views further il-
lustrate that higher LF/HF ratios or greater age
tend to push individual estimates toward the
“Ischaemia” class.

Top 5 Most Important Features (CatBoost)

HF

Max_HR

RMSSD

PNN50

T T T
30 40 50

Average Importance

Figure 9 — CatBoost Feature Importance (physiology-only model).
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4. Conclusions

The principal contribution of this pilot is an
end-to-end system and protocol for scalable, ambu-
latory screening of ischemic heart disease (IHD).
We developed and validated Zhurek, a custom,
non-invasive fingertip PPG sensor that enables
rapid, point-of-care acquisition. A key design ele-
ment is showing that a single one-hour recording
is sufficient to capture diagnostically meaningful
autonomic signatures. Hour-long sessions were
obtained from 20 healthy volunteers aged 18-22
and 20 angiographically confirmed IHD patients,
and eight features were derived: SDNN, RMSSD,
LF, HF, LF/HF, Max HR, BMI, and age. Against
a three-lead Holter ECG, the system demonstrated
clinically acceptable mean absolute errors—0.601
bpm for heart rate, 33.1 ms for SDNN, and 4.8 ms
for RMSSD.

Nonparametric testing (Mann—Whitney) in-
dicated significant between-group differences for
SDNN, LF, HF, Max_HR, BMI, and age (p <0.05).
The first two principal components explained
49.5% of total variance and already separated co-
horts without labels, supporting the informative-
ness of the chosen variables. Methodologically, the
study used machine learning not to overfit predic-
tions on a small sample but to conduct exploratory
ranking of short-duration biomarkers. CatBoost
importance scores placed LF at ~44% of total
contribution, age at ~19%, followed by HF, with
smaller effects for Max_HR and RMSSD. Togeth-
er with the PCA separation, this pinpoints which
markers carry the greatest diagnostic weight and
shows that brief Zhurek acquisitions can recover
autonomic signals traditionally accessed via 24-
hour Holter, laying the groundwork for affordable,
large-scale screening.

Incorporating SHAP improved the transparency
of the Zhurek—CatBoost pipeline and aligns with
emerging explainability standards; at deployment
scale, individualized SHAP profiles could inform
genuinely personalized prevention.

Several caveats qualify these findings. Data mo-
dalities differed by cohort—healthy participants were
recorded with optical PPG, whereas IHD patients

were recorded with ECG—introducing potential sig-
nal-quality biases. The control group’s narrow age
range contrasts with age being a strong discrimina-
tor, raising the risk of confounding. The sample size
(n = 40) is limited; therefore, formal performance
metrics were intentionally omitted to avoid over-
interpretation.

Future work will enlarge and age-diversify the
cohorts—especially the healthy group—and stan-
dardize acquisition by collecting parallel PPG and
single-lead ECG from all participants. A multi-
center longitudinal study is planned to test the
prognostic utility of short-term markers and to
confirm reproducibility. The roadmap also includes
adding nonlinear HRV measures and expanding
automated analysis to enable reliable ambulatory
risk stratification. These steps should enhance the
clinical relevance of the Zhurek approach and ac-
celerate the shift from reactive care to proactive
IHD prevention.
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