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NEW AUTONOMOUS SYSTEM FOR SPATIOTEMPORAL  
CLUSTERING AND VISUALIZATION OF DEVICE TRAJECTORIES  

IN FORENSIC INVESTIGATIONS

Abstract. This study presents «trajectory_analyzer», a Python-based system designed for the foren-
sic analysis and visualization of geolocation data extracted from mobile devices. With the increasing 
volume of spatial-temporal data collected from sources such as GPS, Wi-Fi, and image metadata, fo-
rensic professionals face growing challenges in structuring and interpreting mobility patterns. Existing 
solutions often lack flexibility, require supervised models, or depend on proprietary infrastructure. Our 
approach applies an unsupervised DBSCAN-based trajectory clustering method, temporal ordering, and 
a real-time web map interface to reveal behavioral insights without the need for manual labeling or 
cloud services. Compared to prior research, the system improves spatial accuracy, source transparency, 
and visual clarity. Experimental results show that the proposed clustering method successfully identifies 
movement clusters and transitions while maintaining full offline operability. However, this improvement 
comes at the expense of more local storage because of embedded map tiles. Overall, this work provides 
a practical, understandable, and independent foundation for investigators dealing with unstructured 
multi-source geolocation data.

Keywords: Digital forensics, Geolocation analysis, Trajectory clustering, Unsupervised learning, 
DBSCAN, GPS tracking, Offline tools.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1. Introduction 

 
Nowadays, the volume and detail of data on 

movement trajectories has experienced a sharp 
growth spurt due to the widespread use of GPS-
enabled mobile devices. The use and need for this 
technology has also grown in the field of automotive 
systems and surveillance. The resulting volume of 
spatiotemporal data opens up new possibilities in 
digital forensics, especially in the field of 
reconstruction and visualization of human 
movements for investigative purposes. However, 
working with such a volume of geolocation data 
remains a methodological problem [15]. 

The main challenge lies in the lack of effective 
tools with intuitive and scalable visualization, 
especially for massive and heterogeneous trajectory 
datasets. Existing approaches, including vector field 
analysis [1], skeletal trajectory classification [2], 
and institutional tracking systems [3] that often 
require structured environments, rely on supervised 
learning, or lack flexibility for processing multi-
source device data. 

Existing forensic and trajectory analysis tools 
often rely on cloud infrastructures, lack offline 
reproducibility, and offer limited integration of 
heterogeneous sources. 

Our system addresses these gaps by providing 
(1) an autonomous modular architecture that works 
without internet access, (2) a unified JSON schema 
preserving data provenance, and (3) transparent 
clustering and visualization workflows reproducible 
in local environments. 

Additionally, difficulties arise due to the content 
of the input data itself. Trajectory logs are often out 
of time order, contain uneven sampling, and are 
generated from various sources such as GPS, Wi-Fi 
scanning, EXIF image metadata [17], or 
communication timestamps. Although the 
DBSCAN clustering algorithm has shown 
promising results in extracting spatial structure from 
such data [4], they still require fairly careful 
parameter settings and rarely integrate well with 
visualization tools. Moreover, preprocessing 
remains a necessary but underdeveloped component 
in many forensic pipelines [5]. 
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To address these challenges, this study 
introduces trajectory_analyzer, a robust, offline, and 
open-source framework designed for forensic 
analysis of geolocation data. It accepts input from 
various sources, performs automatic preprocessing, 
and extracts meaningful behavioral patterns through 
geometric clustering and temporal segmentation–
without requiring any training data or manual 
annotation. 

The core research question guiding this work is: 
How can interpretable and meaningful mobility 

patterns be identified from irregular, noisy, and 
heterogeneous geolocation data without the use of 
supervised learning or manual labeling? 

Presented research hypothesis is that such 
patterns can be effectively inferred by combining 
density-based clustering with chronological 
ordering. This allows us to detect frequently visited 
or significant locations (clusters), reconstruct 
transitions or movement routes between them, and 
analyze the role each data source plays in shaping 
the spatial resolution of the trajectory. 

By merging unsupervised analysis with 
interactive, map-based visualization, this study 
provides forensic specialists with an intuitive toolset 
to reconstruct and interpret complex movement 
behaviors. This work aims to bridge the gap between 
raw geolocation logs and human-readable insights, 
especially in contexts where cloud-based solutions 
are impractical or inadvisable. 

The main contributions of this study are as 
follows: 

i. A modular offline system that enables 
autonomous forensic trajectory analysis without 
reliance on cloud infrastructures. 

ii. A unified JSON data schema with source 
provenance, providing consistent integration of 
heterogeneous geolocation sources. 

iii. Use of geodesic distance (Haversine) with 
the DBSCAN algorithm, including a reproducible 
procedure for selecting the ε and minPts parameters. 

iv.  Dynamic source-level filters for interactive 
selection and comparison of trajectory subsets 
across multiple data origins. 

v. A reproducible offline-tile HTML report that 
combines spatiotemporal clustering, visual analy-
tics, and statistical summaries in a portable format. 

 
2. Literature Review 

 
In recent years, the amount of mobile 

geolocation data in the form of GPS traces, Wi-Fi 

scans, as well as EXIF data in images and videos, 
has increased exponentially. This multimodal 
spatial-temporal data is a valuable resource in digital 
forensics, as it allows investigators to track user 
activity, locate sites that a user has been to, as well 
as match temporal activity with digital artifacts. 
However, the recent emergence of a wide range of 
sensors as well as formats makes these sources 
inconsistent in terms of sample rate, accuracy, as 
well as origin. 

Nevertheless, despite the recent ubiquity of 
cloud-based analytical tools, in forensic applica-
tions, they continue to be hampered by issues of pri-
vacy, sovereignty of data, as well as chain-of-cus-
tody issues. This is primarily since cloud-based ana-
lysis could involve transmitting forensic data over 
cloud servers that could contravene confidentiality 
laws as well as instances that could interrupt the 
chain of custody of digital evidence. As a result, the 
need to develop fully offline systems that are able to 
integrate diverse sources of geolocation information 
has emerged as a burning concern in today’s 
forensics. 

As noted in [6], trajectory clustering remains a 
core component of GPS data analysis. However, the 
high dimensionality of raw geolocation logs 
presents difficulties for computational efficiency 
and human interpretation. In response, the study 
proposed various dimensionality reduction 
techniques in conjunction with DBSCAN-based 
clustering to improve processing speed and visual 
clarity. Yet, this process often requires domain-
specific tuning and lacks generalized parameter 
estimation techniques. 

In complementary efforts, researchers in [7] and 
[8] emphasized the need for preprocessing pipelines 
to clean and normalize GPS data before modeling. 
These studies outlined common artifacts such as sig-

nal drift, duplicate records, and inconsistent sam-
pling intervals. Their solutions included interpola-
tion techniques and network-based correction mo-
dels. While technically sound, they often assume 
access to high-quality or real-time datasets, limiting 
their forensic application where data may be sparse 
or corrupted. 

In the context of behavioral analysis, the study 
in [8] reviewed trajectory tracking systems in 
autonomous vehicles. The article underscored the 
importance of accurate localization, anomaly detec-
tion, and route prediction – all of which are transla-
table to forensic movement reconstruction. Mean-
while, [9] introduced a hardware-integrated edge 

computing GPS tracking platform. While promising 
for field deployments, its design prioritizes 
efficiency over flexibility, and its visual output 
remains rudimentary compared to forensic needs. 

As outlined in [1], [11], and [14], the integration 
of geolocation and digital trace data into forensic 
cyber-physical investigations has become more 
prevalent. Their proposed tools focus on timeline 
reconstruction, correspondence analysis, and multi-
source correlation. Although these interfaces 
support event sequencing, they are limited in their 
geospatial resolution and tend to lack interactive 
trajectory mapping features essential for field-level 
analysis. 

Recent visualization frameworks have emerged 
in studies like [2] and [12], which applied vector 
field and density partitioning methods respectively. 
These offer macroscopic views of movement 
patterns in large datasets. However, their utility in 
forensic casework is restricted, as investigators 
often require micro-level insights – such as dwell 
times, visit frequencies, and source-specific 
behavior – which these approaches abstract away. 

Studies [3] and [4] shifted the focus toward 
institutional and behavioral surveillance. The former 
evaluated crime scene classification based on 
skeletal trajectory analysis in surveillance settings, 
highlighting operational benefits and the potential 
for pattern recognition. The latter investigated staff 
perceptions and usability of GPS tagging in forensic 
psychiatric units, revealing gaps in data transpa-
rency and adaptability. Both studies confirm the 
growing reliance on geolocation data in controlled 
environments but underscore the absence of open 
systems for independent review or public domain 
research. 

In [5], Yu et al. stressed the importance of pipe-
line robustness, advocating for modular preproces-
sing and clustering layers. Their work provided a 
foundation for reproducibility in GPS data work-
flows, though their system lacks integrated visuali-
zation or input flexibility. Similarly, [10] advanced 
stream-based clustering for trajectory segmentation, 
with real-time visualization capabilities. While 
scalable, such systems depend heavily on structured, 
continuous input – a luxury often unavailable in 
forensic scenarios. 

Investigations into semantic and behavioral 
pattern extraction, such as those presented in [3], 
[11], and [13], move toward higher-level under-
standing of mobility and digital presence. These 
works proposed frameworks for detecting anomalies 

and identifying common routines across individuals. 
However, their reliance on annotated training data 
and machine learning infrastructure limits practical 
adoption in forensic workflows, which often operate 
with sparse and unlabeled datasets. 

To summarize, past literature provides a diverse 
range of tools for geolocation analysis – from trajec-
tory clustering and dimensionality reduction to 
stream processing and semantic modeling. Howe-
ver, many of these are either too abstract for forensic 
application, too rigid in data input requirements, or 
too opaque for field investigators. In our research, 
we address these gaps by combining the modularity 
of unsupervised clustering [6], the preprocessing 
awareness from [5], and the visual transparency 
from [1], [2]. Our trajectory_analyzer system offers 
an accessible, offline platform that includes cluste-
ring, timeline filtering, and map-based visualization 
in a single package inspired by principles introduced 
in [3] and [11]. 

 
3. Materials and Methods 
 
3.1 Data Structure and Preprocessing 
This module is designed to work on devices with 

a large amount of memory (e.g., SSD, HDD based 
systems and mobile devices) and functions offline to 
ensure reproducibility, transparency of forensic 
examination results and security. It collects a wide 
range of spatial and temporal types of tags and a 
wide range of available data types: GPS logs from 
devices, metadata obtained from scanning Wi-Fi 
access points, EXIF geotags embedded in photos 
and videos, from call and chat history, and system 
timestamps. 

For greater clarity of the logic of the module, a 
block diagram of the system was developed, shown 
as Figure 1, reflecting the main stages from loading 
input data to generating a report. 

This diversified approach reflects the increasing 
complexity of digital movement data, with location-
related data often scattered across multiple sensors 
and applications. As noted in a previous study [1], 
using GPS data exclusively can lead to incomplete 
and biased reconstructions of situations, especially 
indoors or in places with a difficult signal. Thus, our 
module is designed to support and work with com-
bined data from multiple input streams, to support 
more comprehensive and detailed trajectory mode-
ling. 

After extracting the data from another module, 
the collected information is combined into a single 
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computing GPS tracking platform. While promising 
for field deployments, its design prioritizes 
efficiency over flexibility, and its visual output 
remains rudimentary compared to forensic needs. 

As outlined in [1], [11], and [14], the integration 
of geolocation and digital trace data into forensic 
cyber-physical investigations has become more 
prevalent. Their proposed tools focus on timeline 
reconstruction, correspondence analysis, and multi-
source correlation. Although these interfaces 
support event sequencing, they are limited in their 
geospatial resolution and tend to lack interactive 
trajectory mapping features essential for field-level 
analysis. 

Recent visualization frameworks have emerged 
in studies like [2] and [12], which applied vector 
field and density partitioning methods respectively. 
These offer macroscopic views of movement 
patterns in large datasets. However, their utility in 
forensic casework is restricted, as investigators 
often require micro-level insights – such as dwell 
times, visit frequencies, and source-specific 
behavior – which these approaches abstract away. 

Studies [3] and [4] shifted the focus toward 
institutional and behavioral surveillance. The former 
evaluated crime scene classification based on 
skeletal trajectory analysis in surveillance settings, 
highlighting operational benefits and the potential 
for pattern recognition. The latter investigated staff 
perceptions and usability of GPS tagging in forensic 
psychiatric units, revealing gaps in data transpa-
rency and adaptability. Both studies confirm the 
growing reliance on geolocation data in controlled 
environments but underscore the absence of open 
systems for independent review or public domain 
research. 

In [5], Yu et al. stressed the importance of pipe-
line robustness, advocating for modular preproces-
sing and clustering layers. Their work provided a 
foundation for reproducibility in GPS data work-
flows, though their system lacks integrated visuali-
zation or input flexibility. Similarly, [10] advanced 
stream-based clustering for trajectory segmentation, 
with real-time visualization capabilities. While 
scalable, such systems depend heavily on structured, 
continuous input – a luxury often unavailable in 
forensic scenarios. 

Investigations into semantic and behavioral 
pattern extraction, such as those presented in [3], 
[11], and [13], move toward higher-level under-
standing of mobility and digital presence. These 
works proposed frameworks for detecting anomalies 

and identifying common routines across individuals. 
However, their reliance on annotated training data 
and machine learning infrastructure limits practical 
adoption in forensic workflows, which often operate 
with sparse and unlabeled datasets. 

To summarize, past literature provides a diverse 
range of tools for geolocation analysis – from trajec-
tory clustering and dimensionality reduction to 
stream processing and semantic modeling. Howe-
ver, many of these are either too abstract for forensic 
application, too rigid in data input requirements, or 
too opaque for field investigators. In our research, 
we address these gaps by combining the modularity 
of unsupervised clustering [6], the preprocessing 
awareness from [5], and the visual transparency 
from [1], [2]. Our trajectory_analyzer system offers 
an accessible, offline platform that includes cluste-
ring, timeline filtering, and map-based visualization 
in a single package inspired by principles introduced 
in [3] and [11]. 

 
3. Materials and Methods 
 
3.1 Data Structure and Preprocessing 
This module is designed to work on devices with 

a large amount of memory (e.g., SSD, HDD based 
systems and mobile devices) and functions offline to 
ensure reproducibility, transparency of forensic 
examination results and security. It collects a wide 
range of spatial and temporal types of tags and a 
wide range of available data types: GPS logs from 
devices, metadata obtained from scanning Wi-Fi 
access points, EXIF geotags embedded in photos 
and videos, from call and chat history, and system 
timestamps. 

For greater clarity of the logic of the module, a 
block diagram of the system was developed, shown 
as Figure 1, reflecting the main stages from loading 
input data to generating a report. 

This diversified approach reflects the increasing 
complexity of digital movement data, with location-
related data often scattered across multiple sensors 
and applications. As noted in a previous study [1], 
using GPS data exclusively can lead to incomplete 
and biased reconstructions of situations, especially 
indoors or in places with a difficult signal. Thus, our 
module is designed to support and work with com-
bined data from multiple input streams, to support 
more comprehensive and detailed trajectory mode-
ling. 

After extracting the data from another module, 
the collected information is combined into a single 
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structured format. The data set is stored in a JSON 
object with the key "trajectory_points", where each 
record represents a discrete space-time observation. 
Each observation contains four main fields: 

1. Timestamp in ISO 8601 format (e.g., "2023-
12-10T12:42:00Z"); 

2. Coordinates specified as latitude and 
longitude in decimal degrees; 

3. Source, a categorical label indicating the 
origin of the record (e.g.,” GPS", "Wi-Fi", "image", 
"received"). 

The implementation of recording incoming data 
was partially shown in Figure 2. This format is 
designed to handle heterogeneity while preserving 
provenance and temporal integrity two critical 
dimensions in forensic casework. Sensor 

provenance allows analysts to filter or weigh 
observations by reliability, while accurate temporal 
ordering enables timeline reconstruction, path 
tracing, and behavioral segmentation. 

Figure 2 illustrates the required structure and 
composition of the input data in JSON format used 
by the system. Each record follows the schema 
described above, including the three mandatory 
attributes: timestamp, coordinates, and source, 
ensuring interoperability across heterogeneous 
inputs. All coordinates are expressed in the WGS-84 
coordinate reference system. The example also 
demonstrates how the system parses these records 
through the data loading routine, where each entry is 
converted into Python objects for further  
processing.  

 
 

 
 

Figure 1 – Block diagram of the system operation 
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Figure 2 – Required type of incoming data in Json format 
 

 
To prepare the dataset for clustering and 

trajectory analysis, a multi-step preprocessing 
pipeline is implemented. This step is crucial to 
clean, normalize, and structure the data in a form 
that allows consistent mathematical treatment. As 
emphasized by Petrescu et al. [2], trajectory datasets 
derived from real devices are often noisy, irregularly 
sampled, and may include corrupted or semantically 
redundant points. 

Each entry is validated individually. Points with 
missing values, zeroed coordinates, or unreasonable 
accuracy values (e.g., over 10,000 meters) are 
removed. This ensures that subsequent calculations, 
especially those involving distance or clustering, are 
not distorted by invalid data. 

The dataset is then chronologically sorted based 
on timestamps. Since timestamps are initially 
provided in ISO 8601 human-readable format, they 
are converted into Unix epoch time (the number of 
seconds since 1 January 1970 UTC). This 
conversion enables straightforward computation of 
time differences and alignment of asynchronous 
observations from multiple sources. 

Where needed (especially during distance 
calculations), coordinates are converted from 
degrees to radians, enabling trigonometric 
operations such as those used in the haversine 
formula. This ensures the geospatial integrity of 
computed values like step distances, cluster radii, 
and overall route length. 

The outcome of this preprocessing stage is a 
temporally ordered and spatially consistent 
sequence of geolocation points. These cleaned and 

normalized data are then passed to the clustering 
module, where they serve as the foundation for route 
reconstruction and behavior analysis. 

This structure is modeled mathematically as a 
sequence of observations: 

 
D = �di =�ti , xi =�φi , λi�, ai , si��t=1

n
 

 
(1) 

Where: 
• ti ∈ Ris a time value (after conversion to Unix 

timestamp), 
• xi ∈ R2 is the spatial coordinate pair: latitude 

and longitude, 
• ai ∈ R≥0 is the reported accuracy, 
• si ∈ S is a label from a finite set of known 

source types. 
 

Unlike traditional datasets with fixed intervals 
and clean annotations, this real-world format 
embraces irregular sampling, missing intervals, and 
varying source trustworthiness. However, it is 
precisely this challenge that the proposed 
framework is designed to overcome. By integrating 
rigorous preprocessing with unsupervised analysis 
techniques designed for resilience to noise, the 
system allows forensic experts to make sense of 
inconsistent yet highly informative data streams–
without the need for manual annotation or 
supervised training. 

 
3.2 Distance Calculation (Haversine Formula) 

and DBSCAN Clustering 
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All spatial comparisons are done using the 
haversine formula, which calculates the great-circle 
distance between two points on Earth. Coordinates 
are expressed in WGS-84 

Given two locations: 

 
x1=�ϕ1,λ1�,  x2=�ϕ2,λ2� (2) 

the spherical distance in meters is: 
 
 

d=2r ⋅ arcsin���sin2 �
∆φ
2
�+ cos�ϕ1� cos�φ2� sin2 �

∆λ
2
� �� 

 
(3) 

Where: 
1. -Δϕ=ϕ2-ϕ1 , 
2. -Δλ=λ2- λ1 , 
3. -r=6,371,000 meters.  
 
This metric is used for clustering and route 

calculations. 
The DBSCAN algorithm identifies clusters of 

spatially dense points,Cj⊆D. It has two parameters: 
- ε: maximum distance to be considered part of 

a neighborhood (typically 30–50 meters), 
- minPts: the minimum number of points to form 

a dense cluster (typically 3–5). 
 
A point p is a core point if: 
 

∣Nε(p)∣≥ min P ts, Nε(p)=q∈D∣d(p,q)≤ε (4) 

The algorithm constructs clusters by linking 
core points and their reachable neighbors. 

In figure 3 shows Clustered locations visualized 
on a map using the DBSCAN algorithm (ε = 50 m, 
minPts = 3). The visualization covers the obser-
vation period from December 7, 2021 to July 16, 
2025, showing trajectory points derived from image 
(JPG) and video (MP4) metadata. All coordinates 
are expressed in the WGS-84 (EPSG:4326) 
coordinate reference system, and distances are 
computed geodesically using the haversine formula. 
Clustered zones are highlighted as red circular 
markers, while isolated trajectory points are shown 
in neutral tones to indicate noise or transitional 
movement.This figure demonstrates how spatially 
dense locations are detected and grouped by 
DBSCAN, forming clusters annotated with centroid 
coordinates, visit counts, and time intervals

 

 
 

Figure 3 – Clustered locations visualized on map using DBSCAN. 
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Each resulting cluster Cj is annotated with: 
- Centroid: 
 

μj=
1
�Cj�

� xi
xi ∈ Cj

 (5) 

 
- Time interval: 

 
Tj=[min(ti) , max(ti)],di∈Cj (6) 

- Visit count: Nj=∣Cj∣, 
- Source set: Sj=� si ∣∣  di∈Cj � 

 
3.3 The reconstruction of the route, filtering and 

visualization tools 
The trajectory T is the ordered list of 

coordinates: 
 

T=x(1),x(2),…,x(n) (7) 

The route is defined as: 

Route=�x(i),x(i+1)�∣1≤i<n (8) 
 
This is visualized on the map as a polyline. 

Interpolation is currently not applied. From the raw 
data set, a Trajectory is recreated reflecting the exact 
sampling rate and continuity of movement. 

Then we are going to filtering sources: Every 
point has a category-based source label. During 
visualization, the user can apply a filter, S' ⊆ S to 
create a new dataset: 
 

DS'=di∈D∣si∈S' 
 

(9) 

In Figure 4, the first process of grouping JSON 
data is highlighted. This process shows how the 
system derives the latitude and longitude values 
from the input data, which are then transformed 
from meters to radians in accordance with the WGS-
84 reference system. By this means, the algorithm 
DBSCAN is executed with epsilon set at 50 meters 
and the value of minPts. Every identified group is 
marked with a relevant ID, center, and count values 
that are stored in a JSON summary. 

 
 

 
 

Figure 4 – The initial process of clustering json data 
 
 

Then all clusters and trajectory lines are 
recalculated using only the filtered set. Using only 
filtered points allows you to selectively analyze 
GPS-only data, indoor data (for example, Wi-Fi), or 
image-based sources. Filtering is applied 
dynamically, automatically updating visual changes 
on the map. 

 

3.4 Visualization Interface and Offline Map 
Rendering 

The final stage of the trajectory_analyzer system 
involves the generation of a fully interactive, 
offline-capable geolocation visualization interface. 
Unlike other existing systems based on online 
mapping services, our software solution creates a  
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dynamic HTML-based report that allows you to 
study the user's status when moving in real time 
without having to use any external servers, without 
network access or third-party API integrations. 

The visual output consists of an HTML file 
(report.html) related to JavaScript and CSS user 
resources (report_template.html 
report_style.css) and local map sheets. The latter 
provides complete offline operation, eliminating 
dependence on external maps such as 
OpenStreetMap or Mapbox. The application 
weighs more than typical cloud-based visualizers 
due to the embedded tile storage, but offers a 
practical trade-off in the context of digital 
forensics, where data sovereignty, stability, and 
network isolation are often essential. 

The interactive map interface itself is not 
rendered using Folium or Leaflet directly; rather, the 
system uses a custom-built frontend. Leaflet is 
utilized only for low-level map layer handling, such 
as zooming and tile display. All higher-order 
functionality–including cluster rendering, filter 
toggles, UI panels, and event responses–is 
implemented manually using vanilla JavaScript and 
custom CSS, providing full control over the logic 
and appearance of the visualization. 

After filtering the input data completely, each 
point of movement is displayed in chronological 
order, drawing a continuous trajectory of movement. 
Color coding is applied to the type of data shown, 
whether it is a route, trajectory, blue, as shown in 
Figure 5. Clustered zones, red. This allows analysts 
to immediately distinguish between categories of 
data. Individual points on the route are interactive. 
When you hover the mouse over them, pop-up 
windows appear displaying the point's index, 
source, timestamp, and the number of visits to that 
location. Unlike many clustering systems that 
visualize only centroids or aggregate data, this 
implementation emphasizes granularity, exposing 
every recorded stop to detailed inspection. 

In parallel, clustered locations–calculated 
through DBSCAN as described in earlier sections–
are rendered using larger custom markers, visually 
distinguishing them from transient path points. 
These clusters include summary pop-ups detailing 
the average coordinates (centroid), the time span 
during which the cluster was active, and the number 
of constituent records. This dual-layer view 
(trajectory path + static clusters) allows the analyst 
to quickly separate stationary behavior (e.g., place 

visits) from transitional motion (e.g., commuting or 
travel). 

A collapsible side panel is integrated into the 
map interface, providing investigators with a 
interactive filtering mechanism. Through intuitive 
checkboxes and sliders, the user can toggle visibility 
of specific data sources or limit the visualized route 
to a selected time interval. These controls operate in 
real time and require no page reloads or backend 
reprocessing. This interactivity allows analysts to 
test hypotheses, isolate anomalies, or correlate 
movement patterns with other data (e.g., crime 
timestamps, device logs). 

Below the map, a set of visual summaries is 
presented in the form of interactive charts and 
diagrams. These include: 

- A pie chart of the most frequently visited 
locations (by cluster density), 

- A bar chart of the last N visited places, 
- A chronological list of all locations in order, 

with metadata including time, coordinates, and 
source. 

These visualizations are automatically generated 
during the report creation process and provide 
compact insight into behavioral tendencies, such as 
routine places and movement regularity. All 
diagrams are embedded within the HTML file and 
rendered with client-side JavaScript libraries, 
ensuring they remain functional even in isolated 
environments. 

Finally, a dedicated button is available for 
exporting a full forensic report as a compressed .zip 
archive (report.zip). This export contains: 

- The full visualization HTML, 
- All embedded resources (CSS, JS, map tiles), 
- A JSON summary of the clustered and raw 

data, 
- A preformatted PDF-style document with 

detailed tables of all recorded points, sources, and 
cluster summaries. 

This modular reporting format ensures accuracy, 
convenience and transparency in accordance with 
the best practices of digital forensics. The non-
overloaded interface design focuses on the 
convenience of searching and working with it 
quickly. The report provides high-resolution spatial 
detail, provides a temporal context, and shows the 
complete chronological sequence of the vehicle's 
movement. all this works without compromising 
security, because the entire system is independent of 
Internet services. 
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Additionally, the report has two chart variations. 
The first diagram shows the top visited locations 
over a total period (75 m per pixel tile resolution) of 
time and is shown below as Figure 5. The second 
diagram is designed to view the most recently 
visited locations and is shown in Figure 6.  

Thus, the trajectory_analyzer visualization layer 
transforms the raw geolocation data into a user-
friendly, reliable interface from the point of view of 
forensic examination. With offline functionality, 
interpretability, and interactivity, it serves as both a 
diagnostic tool and a formal reporting mechanism in 
investigative workflows. 

 
 

 
 

Figure 5 – Most visited locations (total) 
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Figure 6 – Recent visits by location. 
 
 

4. Results and Discussion  
 

The developed system successfully processed 
multi-source geolocation data and visualized user 
movement patterns, including route reconstruction 
and clustered visit locations. Compared to previous 
DBSCAN-based frameworks [5], the integration of 
preprocessing steps and source-aware filtering 
appears to improve the clarity and reliability of 
clustering outcomes. 

On Figure 7, shows the complete trajectory 
derived from raw multi-source data, plotted in 
chronological order within the WGS-84 coordinate 
system. Each point represents an individual 

recorded location, while the continuous blue line 
visualizes the sequential path of movement over the 
full observation period (December 7, 2021 – July 16, 
2025). This figure demonstrates the system’s ability 
to reproduce detailed movement routes without 
clustering, preserving temporal accuracy and source 
integrity.  

In contrast to semi-supervised pipelines 
described in [6][7], the fully offline nature of our 
tool enhances responsiveness and usability, 
especially in privacy-sensitive environments. 
Visualization is rendered nearly instantaneously for 
small and medium datasets, supporting quick 
interpretation during local forensic investigations. 

 
 

 
 

Figure 7 – User movement route reconstructed from raw data (shown on an interactive map). 
 
 

This approach aligns well with needs in forensic 
practice, where fast access, transparency, and data 
locality are often prioritized over dependence on 
remote APIs or web-based solutions. However, the 
system’s local map rendering and multiple visual 
layers may result in greater disk usage than 
lightweight alternatives [3][9] and [16]. 

Overall, trajectory_analyzer demonstrates a 
practical and interpretable method for digital 
forensic mobility analysis, with strong applicability 
in settings that require secure and autonomous data 
processing. 

 
Conclusion 
 
This study introduced trajectory_analyzer, a 

modular and fully offline system for reconstructing 
and visualizing geolocation data in forensic  
 
investigations. The framework integrates key 
technical components–including temporal 
preprocessing, spherical distance computation using 
the Haversine formula, and unsupervised clustering 
via DBSCAN–to extract meaningful behavioral 
patterns from unstructured, multi-source data. 

A major novelty of the system is its combined 
approach, which unites: 

- real unsupervised clustering, 
- spherical distance metrics, 
- source-aware dynamic recomputation, 
 and a fully offline, interactive visualization 

layer. 

This design enables the tool to operate 
independently of cloud services or training datasets, 
making it ideal for use in sensitive forensic contexts 
where data privacy, reproducibility, and speed 
are paramount. Investigators can explore clusters, 
trace user routes, and analyze the role of different 
data sources–all within an interpretable and 
responsive interface. 

Despite its advantages in speed, the system’s 
reliance on local map assets increases storage 
requirements, which may limit portability in some 
scenarios.  

Future work will focus on several directions: 
1. Automating the selection of DBSCAN para-

meters (ε and minPts) for different dataset scales. 
2. Optimizing the visual layers footprint through 

compressed or vector-based tile storage. 
3. Extending support for additional input and 

export formats. 
Overall, trajectory_analyzer delivers a practical, 

transparent, and extensible solution for geolocation 
analysis, one that aligns with the needs of modern 
digital forensics for modular, offline, and 
interpretable tools. 
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