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NEW AUTONOMOUS SYSTEM FOR SPATIOTEMPORAL
CLUSTERING AND VISUALIZATION OF DEVICE TRAJECTORIES
IN FORENSIC INVESTIGATIONS

Abstract. This study presents «trajectory_analyzer», a Python-based system designed for the foren-
sic analysis and visualization of geolocation data extracted from mobile devices. With the increasing
volume of spatial-temporal data collected from sources such as GPS, Wi-Fi, and image metadata, fo-
rensic professionals face growing challenges in structuring and interpreting mobility patterns. Existing
solutions often lack flexibility, require supervised models, or depend on proprietary infrastructure. Our
approach applies an unsupervised DBSCAN-based trajectory clustering method, temporal ordering, and
a real-time web map interface to reveal behavioral insights without the need for manual labeling or
cloud services. Compared to prior research, the system improves spatial accuracy, source transparency,
and visual clarity. Experimental results show that the proposed clustering method successfully identifies
movement clusters and transitions while maintaining full offline operability. However, this improvement
comes at the expense of more local storage because of embedded map tiles. Overall, this work provides
a practical, understandable, and independent foundation for investigators dealing with unstructured
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multi-source geolocation data.

Keywords: Digital forensics, Geolocation analysis, Trajectory clustering, Unsupervised learning,

DBSCAN, GPS tracking, Offline tools.

1. Introduction

Nowadays, the volume and detail of data on
movement trajectories has experienced a sharp
growth spurt due to the widespread use of GPS-
enabled mobile devices. The use and need for this
technology has also grown in the field of automotive
systems and surveillance. The resulting volume of
spatiotemporal data opens up new possibilities in
digital forensics, especially in the field of
reconstruction and visualization of human
movements for investigative purposes. However,
working with such a volume of geolocation data
remains a methodological problem [15].

The main challenge lies in the lack of effective
tools with intuitive and scalable visualization,
especially for massive and heterogeneous trajectory
datasets. Existing approaches, including vector field
analysis [1], skeletal trajectory classification [2],
and institutional tracking systems [3] that often
require structured environments, rely on supervised
learning, or lack flexibility for processing multi-
source device data.

rﬁﬂ:ﬁ:"] Licensed under CC BY-NC 4.0

Existing forensic and trajectory analysis tools
often rely on cloud infrastructures, lack offline
reproducibility, and offer limited integration of
heterogeneous sources.

Our system addresses these gaps by providing
(1) an autonomous modular architecture that works
without internet access, (2) a unified JSON schema
preserving data provenance, and (3) transparent
clustering and visualization workflows reproducible
in local environments.

Additionally, difficulties arise due to the content
of the input data itself. Trajectory logs are often out
of time order, contain uneven sampling, and are
generated from various sources such as GPS, Wi-Fi

scanning, EXIF image metadata [17], or
communication  timestamps.  Although the
DBSCAN clustering algorithm has shown

promising results in extracting spatial structure from
such data [4], they still require fairly careful
parameter settings and rarely integrate well with
visualization tools. Moreover, preprocessing
remains a necessary but underdeveloped component
in many forensic pipelines [5].

© 2025 Al-Farabi Kazakh National University
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To address these challenges, this study
introduces trajectory analyzer, a robust, offline, and
open-source framework designed for forensic
analysis of geolocation data. It accepts input from
various sources, performs automatic preprocessing,
and extracts meaningful behavioral patterns through
geometric clustering and temporal segmentation—
without requiring any training data or manual
annotation.

The core research question guiding this work is:

How can interpretable and meaningful mobility
patterns be identified from irregular, noisy, and
heterogeneous geolocation data without the use of
supervised learning or manual labeling?

Presented research hypothesis is that such
patterns can be effectively inferred by combining
density-based clustering with  chronological
ordering. This allows us to detect frequently visited
or significant locations (clusters), reconstruct
transitions or movement routes between them, and
analyze the role each data source plays in shaping
the spatial resolution of the trajectory.

By merging unsupervised analysis with
interactive, map-based visualization, this study
provides forensic specialists with an intuitive toolset
to reconstruct and interpret complex movement
behaviors. This work aims to bridge the gap between
raw geolocation logs and human-readable insights,
especially in contexts where cloud-based solutions
are impractical or inadvisable.

The main contributions of this study are as
follows:

i. A modular offline system that enables
autonomous forensic trajectory analysis without
reliance on cloud infrastructures.

ii. A unified JSON data schema with source
provenance, providing consistent integration of
heterogeneous geolocation sources.

iii.  Use of geodesic distance (Haversine) with
the DBSCAN algorithm, including a reproducible
procedure for selecting the € and minPts parameters.

iv. Dynamic source-level filters for interactive
selection and comparison of trajectory subsets
across multiple data origins.

v. A reproducible offline-tile HTML report that
combines spatiotemporal clustering, visual analy-
tics, and statistical summaries in a portable format.

2. Literature Review

In recent years, the amount of mobile
geolocation data in the form of GPS traces, Wi-Fi

scans, as well as EXIF data in images and videos,
has increased exponentially. This multimodal
spatial-temporal data is a valuable resource in digital
forensics, as it allows investigators to track user
activity, locate sites that a user has been to, as well
as match temporal activity with digital artifacts.
However, the recent emergence of a wide range of
sensors as well as formats makes these sources
inconsistent in terms of sample rate, accuracy, as
well as origin.

Nevertheless, despite the recent ubiquity of
cloud-based analytical tools, in forensic applica-
tions, they continue to be hampered by issues of pri-
vacy, sovereignty of data, as well as chain-of-cus-
tody issues. This is primarily since cloud-based ana-
lysis could involve transmitting forensic data over
cloud servers that could contravene confidentiality
laws as well as instances that could interrupt the
chain of custody of digital evidence. As a result, the
need to develop fully offline systems that are able to
integrate diverse sources of geolocation information
has emerged as a burning concern in today’s
forensics.

As noted in [6], trajectory clustering remains a
core component of GPS data analysis. However, the
high dimensionality of raw geolocation logs
presents difficulties for computational efficiency
and human interpretation. In response, the study
proposed  various  dimensionality  reduction
techniques in conjunction with DBSCAN-based
clustering to improve processing speed and visual
clarity. Yet, this process often requires domain-
specific tuning and lacks generalized parameter
estimation techniques.

In complementary efforts, researchers in [7] and
[8] emphasized the need for preprocessing pipelines
to clean and normalize GPS data before modeling.
These studies outlined common artifacts such as sig
nal drift, duplicate records, and inconsistent sam-
pling intervals. Their solutions included interpola-
tion techniques and network-based correction mo-
dels. While technically sound, they often assume
access to high-quality or real-time datasets, limiting
their forensic application where data may be sparse
or corrupted.

In the context of behavioral analysis, the study
in [8] reviewed trajectory tracking systems in
autonomous vehicles. The article underscored the
importance of accurate localization, anomaly detec-
tion, and route prediction — all of which are transla-
table to forensic movement reconstruction. Mean-
while, [9] introduced a hardware-integrated edge
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computing GPS tracking platform. While promising
for field deployments, its design prioritizes
efficiency over flexibility, and its visual output
remains rudimentary compared to forensic needs.

Asoutlined in [1], [11], and [14], the integration
of geolocation and digital trace data into forensic
cyber-physical investigations has become more
prevalent. Their proposed tools focus on timeline
reconstruction, correspondence analysis, and multi-
source correlation. Although these interfaces
support event sequencing, they are limited in their
geospatial resolution and tend to lack interactive
trajectory mapping features essential for field-level
analysis.

Recent visualization frameworks have emerged
in studies like [2] and [12], which applied vector
field and density partitioning methods respectively.
These offer macroscopic views of movement
patterns in large datasets. However, their utility in
forensic casework is restricted, as investigators
often require micro-level insights — such as dwell
times, visit frequencies, and source-specific
behavior — which these approaches abstract away.

Studies [3] and [4] shifted the focus toward
institutional and behavioral surveillance. The former
evaluated crime scene classification based on
skeletal trajectory analysis in surveillance settings,
highlighting operational benefits and the potential
for pattern recognition. The latter investigated staff
perceptions and usability of GPS tagging in forensic
psychiatric units, revealing gaps in data transpa-
rency and adaptability. Both studies confirm the
growing reliance on geolocation data in controlled
environments but underscore the absence of open
systems for independent review or public domain
research.

In [5], Yu et al. stressed the importance of pipe-
line robustness, advocating for modular preproces-
sing and clustering layers. Their work provided a
foundation for reproducibility in GPS data work-
flows, though their system lacks integrated visuali-
zation or input flexibility. Similarly, [10] advanced
stream-based clustering for trajectory segmentation,
with real-time visualization capabilities. While
scalable, such systems depend heavily on structured,
continuous input — a luxury often unavailable in
forensic scenarios.

Investigations into semantic and behavioral
pattern extraction, such as those presented in [3],
[11], and [13], move toward higher-level under-
standing of mobility and digital presence. These
works proposed frameworks for detecting anomalies

and identifying common routines across individuals.
However, their reliance on annotated training data
and machine learning infrastructure limits practical
adoption in forensic workflows, which often operate
with sparse and unlabeled datasets.

To summarize, past literature provides a diverse
range of tools for geolocation analysis — from trajec-
tory clustering and dimensionality reduction to
stream processing and semantic modeling. Howe-
ver, many of these are either too abstract for forensic
application, too rigid in data input requirements, or
too opaque for field investigators. In our research,
we address these gaps by combining the modularity
of unsupervised clustering [6], the preprocessing
awareness from [5], and the visual transparency
from [1], [2]. Our trajectory_analyzer system offers
an accessible, offline platform that includes cluste-
ring, timeline filtering, and map-based visualization
in a single package inspired by principles introduced
in[3]and [11].

3. Materials and Methods

3.1 Data Structure and Preprocessing

This module is designed to work on devices with
a large amount of memory (e.g., SSD, HDD based
systems and mobile devices) and functions offline to
ensure reproducibility, transparency of forensic
examination results and security. It collects a wide
range of spatial and temporal types of tags and a
wide range of available data types: GPS logs from
devices, metadata obtained from scanning Wi-Fi
access points, EXIF geotags embedded in photos
and videos, from call and chat history, and system
timestamps.

For greater clarity of the logic of the module, a
block diagram of the system was developed, shown
as Figure 1, reflecting the main stages from loading
input data to generating a report.

This diversified approach reflects the increasing
complexity of digital movement data, with location-
related data often scattered across multiple sensors
and applications. As noted in a previous study [1],
using GPS data exclusively can lead to incomplete
and biased reconstructions of situations, especially
indoors or in places with a difficult signal. Thus, our
module is designed to support and work with com-
bined data from multiple input streams, to support
more comprehensive and detailed trajectory mode-
ling.

After extracting the data from another module,
the collected information is combined into a single
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structured format. The data set is stored in a JSON
object with the key "trajectory points", where each
record represents a discrete space-time observation.
Each observation contains four main fields:

1. Timestamp in ISO 8601 format (e.g., "2023-
12-10T12:42:00Z");

2. Coordinates specified as
longitude in decimal degrees;

3. Source, a categorical label indicating the
origin of the record (e.g.,” GPS", "Wi-Fi", "image",
"received").

The implementation of recording incoming data
was partially shown in Figure 2. This format is
designed to handle heterogeneity while preserving
provenance and temporal integrity two critical
dimensions in forensic casework. Sensor

latitude and

—

Filtering by source
and time

¥

provenance allows analysts to filter or weigh
observations by reliability, while accurate temporal
ordering enables timeline reconstruction, path
tracing, and behavioral segmentation.

Figure 2 illustrates the required structure and
composition of the input data in JSON format used
by the system. Each record follows the schema
described above, including the three mandatory
attributes: timestamp, coordinates, and source,
ensuring interoperability across heterogeneous
inputs. All coordinates are expressed in the WGS-84
coordinate reference system. The example also
demonstrates how the system parses these records
through the data loading routine, where each entry is
converted into Python objects for further
processing.
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Figure 1 — Block diagram of the system operation
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"r", encoding="utf-8")

') .upper()

Figure 2 — Required type of incoming data in Json format

To prepare the dataset for clustering and
trajectory analysis, a multi-step preprocessing
pipeline is implemented. This step is crucial to
clean, normalize, and structure the data in a form
that allows consistent mathematical treatment. As
emphasized by Petrescu et al. [2], trajectory datasets
derived from real devices are often noisy, irregularly
sampled, and may include corrupted or semantically
redundant points.

Each entry is validated individually. Points with
missing values, zeroed coordinates, or unreasonable
accuracy values (e.g., over 10,000 meters) are
removed. This ensures that subsequent calculations,
especially those involving distance or clustering, are
not distorted by invalid data.

The dataset is then chronologically sorted based
on timestamps. Since timestamps are initially
provided in ISO 8601 human-readable format, they
are converted into Unix epoch time (the number of
seconds since 1 January 1970 UTC). This
conversion enables straightforward computation of
time differences and alignment of asynchronous
observations from multiple sources.

Where needed (especially during distance
calculations), coordinates are converted from
degrees to radians, enabling trigonometric
operations such as those used in the haversine
formula. This ensures the geospatial integrity of
computed values like step distances, cluster radii,
and overall route length.

The outcome of this preprocessing stage is a
temporally ordered and spatially consistent
sequence of geolocation points. These cleaned and

normalized data are then passed to the clustering
module, where they serve as the foundation for route
reconstruction and behavior analysis.

This structure is modeled mathematically as a
sequence of observations:

D:[di:(tiaxi:(wialli}a az’usi)];:l (1)

Where:

e 1, € Ris a time value (after conversion to Unix
timestamp),

° x; € R? is the spatial coordinate pair: latitude
and longitude,

e a; € R>0 is the reported accuracy,

e 5;€S is a label from a finite set of known
source types.

Unlike traditional datasets with fixed intervals
and clean annotations, this real-world format
embraces irregular sampling, missing intervals, and
varying source trustworthiness. However, it is
precisely this challenge that the proposed
framework is designed to overcome. By integrating
rigorous preprocessing with unsupervised analysis
techniques designed for resilience to noise, the
system allows forensic experts to make sense of
inconsistent yet highly informative data streams—
without the need for manual annotation or
supervised training.

3.2 Distance Calculation (Haversine Formula)
and DBSCAN Clustering
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All spatial comparisons are done using the
haversine formula, which calculates the great-circle
distance between two points on Earth. Coordinates
are expressed in WGS-84

Given two locations:

=41, x2=(d,.h) 2

the spherical distance in meters is:

d=2r - arcsin ‘/ﬁinz (A2—¢/+ cos(cl)ljcos(gozjsin2 g)// 3)

Where:
1. -Ap=,-¢,,
2. -M:/b- /11 .

3. -r=6,371,000 meters.

This metric is used for clustering and route
calculations.

The DBSCAN algorithm identifies clusters of
spatially dense points,C;SD. It has two parameters:

- & maximum distance to be considered part of
a neighborhood (typically 30-50 meters),

- minPts: the minimum number of points to form
a dense cluster (typically 3-5).

A point p is a core point if:

IN,(p)|I>min P ts, N.(p)=q€DI\d(p,q)<¢ (4)

The algorithm constructs clusters by linking
core points and their reachable neighbors.

In figure 3 shows Clustered locations visualized
on a map using the DBSCAN algorithm (¢ = 50 m,
minPts = 3). The visualization covers the obser-
vation period from December 7, 2021 to July 16,
2025, showing trajectory points derived from image
(JPG) and video (MP4) metadata. All coordinates
are expressed in the WGS-84 (EPSG:4326)
coordinate reference system, and distances are
computed geodesically using the haversine formula.
Clustered zones are highlighted as red circular
markers, while isolated trajectory points are shown
in neutral tones to indicate noise or transitional
movement.This figure demonstrates how spatially
dense locations are detected and grouped by
DBSCAN, forming clusters annotated with centroid
coordinates, visit counts, and time intervals

T de 4
® 3
i :
@
o
[ ]

Hyp-Cysran

Figure 3 — Clustered locations visualized on map using DBSCAN.
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Each resulting cluster C; is annotated with:
- Centroid:

BTol L )

- Time interval:

T=[min(z,) ,max(z,)],d;€C; (6)

- Visit count: N=|Cjl,
- Source set: S]:{ s; | dlEC,-}

3.3 The reconstruction of the route, filtering and
visualization tools

The trajectory 7 is the ordered list of
coordinates:

T=x(1),x(2),...,x(n) (7)

The route is defined as:

, min samples=1,

.dumps (

metric="

Route=(x 5)x g+1) ) 15i<n (8)

This is visualized on the map as a polyline.
Interpolation is currently not applied. From the raw
data set, a Trajectory is recreated reflecting the exact
sampling rate and continuity of movement.

Then we are going to filtering sources: Every
point has a category-based source label. During
visualization, the user can apply a filter, §cSto
create a new dataset:

Dg=d,€DIs;ES 9)

In Figure 4, the first process of grouping JSON
data is highlighted. This process shows how the
system derives the latitude and longitude values
from the input data, which are then transformed
from meters to radians in accordance with the WGS-
84 reference system. By this means, the algorithm
DBSCAN is executed with epsilon set at 50 meters
and the value of minPts. Every identified group is
marked with a relevant ID, center, and count values
that are stored in a JSON summary.

Figure 4 — The initial process of clustering json data

Then all clusters and trajectory lines are
recalculated using only the filtered set. Using only
filtered points allows you to selectively analyze
GPS-only data, indoor data (for example, Wi-Fi), or
image-based sources. Filtering is applied
dynamically, automatically updating visual changes
on the map.

3.4 Visualization Interface and Offline Map
Rendering

The final stage of the trajectory analyzer system
involves the generation of a fully interactive,
offline-capable geolocation visualization interface.
Unlike other existing systems based on online
mapping services, our software solution creates a
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dynamic HTML-based report that allows you to
study the user's status when moving in real time
without having to use any external servers, without
network access or third-party API integrations.

The visual output consists of an HTML file
(report.html) related to JavaScript and CSS user
resources (report_template.html
report_style.css) and local map sheets. The latter
provides complete offline operation, eliminating
dependence on external maps such as
OpenStreetMap or Mapbox. The application
weighs more than typical cloud-based visualizers
due to the embedded tile storage, but offers a
practical trade-off in the context of digital
forensics, where data sovereignty, stability, and
network isolation are often essential.

The interactive map interface itself is not
rendered using Folium or Leaflet directly; rather, the
system uses a custom-built frontend. Leaflet is
utilized only for low-level map layer handling, such
as zooming and tile display. All higher-order
functionality—including cluster rendering, filter
toggles, Ul panels, and event responses—is
implemented manually using vanilla JavaScript and
custom CSS, providing full control over the logic
and appearance of the visualization.

After filtering the input data completely, each
point of movement is displayed in chronological
order, drawing a continuous trajectory of movement.
Color coding is applied to the type of data shown,
whether it is a route, trajectory, blue, as shown in
Figure 5. Clustered zones, red. This allows analysts
to immediately distinguish between categories of
data. Individual points on the route are interactive.
When you hover the mouse over them, pop-up
windows appear displaying the point's index,
source, timestamp, and the number of visits to that
location. Unlike many clustering systems that
visualize only centroids or aggregate data, this
implementation emphasizes granularity, exposing
every recorded stop to detailed inspection.

In parallel, clustered locations—calculated
through DBSCAN as described in earlier sections—
are rendered using larger custom markers, visually
distinguishing them from transient path points.
These clusters include summary pop-ups detailing
the average coordinates (centroid), the time span
during which the cluster was active, and the number
of constituent records. This dual-layer view
(trajectory path + static clusters) allows the analyst
to quickly separate stationary behavior (e.g., place
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visits) from transitional motion (e.g., commuting or
travel).

A collapsible side panel is integrated into the
map interface, providing investigators with a
interactive filtering mechanism. Through intuitive
checkboxes and sliders, the user can toggle visibility
of specific data sources or limit the visualized route
to a selected time interval. These controls operate in
real time and require no page reloads or backend
reprocessing. This interactivity allows analysts to
test hypotheses, isolate anomalies, or correlate
movement patterns with other data (e.g., crime
timestamps, device logs).

Below the map, a set of visual summaries is
presented in the form of interactive charts and
diagrams. These include:

- A pie chart of the most frequently visited
locations (by cluster density),

- A bar chart of the last N visited places,

- A chronological list of all locations in order,
with metadata including time, coordinates, and
source.

These visualizations are automatically generated
during the report creation process and provide
compact insight into behavioral tendencies, such as
routine places and movement regularity. All
diagrams are embedded within the HTML file and
rendered with client-side JavaScript libraries,
ensuring they remain functional even in isolated
environments.

Finally, a dedicated button is available for
exporting a full forensic report as a compressed .zip
archive (report.zip). This export contains:

- The full visualization HTML,

- All embedded resources (CSS, JS, map tiles),

- A JSON summary of the clustered and raw
data,

- A preformatted PDF-style document with
detailed tables of all recorded points, sources, and
cluster summaries.

This modular reporting format ensures accuracy,
convenience and transparency in accordance with
the best practices of digital forensics. The non-
overloaded interface design focuses on the
convenience of searching and working with it
quickly. The report provides high-resolution spatial
detail, provides a temporal context, and shows the
complete chronological sequence of the vehicle's
movement. all this works without compromising
security, because the entire system is independent of
Internet services.
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Additionally, the report has two chart variations.
The first diagram shows the top visited locations
over a total period (75 m per pixel tile resolution) of
time and is shown below as Figure 5. The second
diagram is designed to view the most recently
visited locations and is shown in Figure 6.

Thus, the trajectory_analyzer visualization layer
transforms the raw geolocation data into a user-
friendly, reliable interface from the point of view of
forensic examination. With offline functionality,
interpretability, and interactivity, it serves as both a
diagnostic tool and a formal reporting mechanism in
investigative workflows.

Trajectory Report

Summary

Total Points: 63

Total Clusters: 27

Date Range: 21.06.2022 - 15.06.2025
Report Generated: 04.08.2025 07:09:58
Analyzer Version: 1.0.0

Sources Breakdown

JPG: 57
MP4: 6

Top Locations

Top 10 Clustered Locations by Visit Count

(51.10231, 71.38703)
(51.09102, 71.41812)
{51.13912, 71.40226)
(51.12492, 71.41045)
(51.13813, 71.41073)
(51.12197, 71.37627)
(51.13915, 71.39413)
(51.08680, 71.40985)
(51.15334, 71.41185)

(51.17190, 71.42920)

o
Y]

Visit Count

Figure 5 — Most visited locations (total)
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Last Visited Locations

Last 10 Visited Locations (Latest on Top)

(51.12491, 71.41044)
2025-06-15T04:00:57Z

(51.12491, 71.41046)
2025-05-29T08:39:26Z

(51.12491, 71.41046)
2025-05-29708:39:22Z

(51.12492, 71.41046)
2025-05-18T04:09:547

(51.12492, 71.41048)
2025-05-18T02:06:52Z

(51.10227, 71.38704)
2025-05-11T16:39:03Z

(51.10225, 71.38703)
2025-05-11T16:39:00Z

(51.10225, 71.38703)
2025-05-11T16:38:50Z

(51.10240, 71.38700)
2025-05-11T12:39:347

(51.09025, 71.41930)
2025-05-06T12:18:482

0.0 0.2 0.4

Show/Hide All Trajectory Points

# Latitude Longitude
1 51.12600 7140691
2 51.13136 71.40319
3 51.13001 71.40381
4 51.15334 71.41185
5 51.15334 71.41185
6 51.13016 71.39412
7 51.08931 71.40521
8 51.11402 71.43113
9 5112192 71.37643
10 51.12187 71.37613
11 51.13817 71.41070

,_.

0.6 0.8 1.0
Visit Count
Timestamp Source

2022-06-21T07:17:02Z PG
2022-06-21T07:39:07Z PG
2022-06-21T07:39:28Z PG
2022-06-21T08:06:31Z PG
2022-06-21T08:06:44Z PG
2022-07-11T20:22:172 PG
2022-07-16T20:50:02Z PG
2022-09-03T18:42:32Z PG
2022-09-15T12:27:292 PG
2022-09-15T13:19:247 PG
2022-10-16T12:05:04Z PG

Figure 6 — Recent visits by location.

4. Results and Discussion

The developed system successfully processed
multi-source geolocation data and visualized user
movement patterns, including route reconstruction
and clustered visit locations. Compared to previous
DBSCAN-based frameworks [5], the integration of
preprocessing steps and source-aware filtering
appears to improve the clarity and reliability of
clustering outcomes.

On Figure 7, shows the complete trajectory
derived from raw multi-source data, plotted in
chronological order within the WGS-84 coordinate
system. Each point represents an individual

12

recorded location, while the continuous blue line
visualizes the sequential path of movement over the
full observation period (December 7, 2021 — July 16,
2025). This figure demonstrates the system’s ability
to reproduce detailed movement routes without
clustering, preserving temporal accuracy and source
integrity.

In contrast to semi-supervised pipelines
described in [6][7], the fully offline nature of our
tool enhances responsiveness and usability,
especially in privacy-sensitive environments.
Visualization is rendered nearly instantaneously for
small and medium datasets, supporting quick
interpretation during local forensic investigations.
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Figure 7 — User movement route reconstructed from raw data (shown on an interactive map).

This approach aligns well with needs in forensic
practice, where fast access, transparency, and data
locality are often prioritized over dependence on
remote APIs or web-based solutions. However, the
system’s local map rendering and multiple visual
layers may result in greater disk usage than
lightweight alternatives [3][9] and [16].

Overall, trajectory analyzer demonstrates a
practical and interpretable method for digital
forensic mobility analysis, with strong applicability
in settings that require secure and autonomous data
processing.

Conclusion

This study introduced trajectory analyzer, a
modular and fully offline system for reconstructing
and visualizing geolocation data in forensic

investigations. The framework integrates key
technical components—including temporal
preprocessing, spherical distance computation using
the Haversine formula, and unsupervised clustering
via DBSCAN-to extract meaningful behavioral
patterns from unstructured, multi-source data.

A major novelty of the system is its combined
approach, which unites:

- real unsupervised clustering,

- spherical distance metrics,

- source-aware dynamic recomputation,

and a fully offline, interactive visualization
layer.

This design enables the tool to operate
independently of cloud services or training datasets,
making it ideal for use in sensitive forensic contexts
where data privacy, reproducibility, and speed
are paramount. Investigators can explore clusters,
trace user routes, and analyze the role of different
data sources—all within an interpretable and
responsive interface.

Despite its advantages in speed, the system’s
reliance on local map assets increases storage
requirements, which may limit portability in some
scenarios.

Future work will focus on several directions:

1. Automating the selection of DBSCAN para-
meters (¢ and minPts) for different dataset scales.

2. Optimizing the visual layers footprint through
compressed or vector-based tile storage.

3. Extending support for additional input and
export formats.

Overall, trajectory_analyzer delivers a practical,
transparent, and extensible solution for geolocation
analysis, one that aligns with the needs of modern
digital forensics for modular, offline, and
interpretable tools.
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