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the behavior of mesh plates under external loads by representing equilibrium equations in a Cartesian 
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tion is carried out with the Bubnov-Galerkin technique. Computational experiments are conducted to 
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Modeling of the deformed state of mesh plates using complex configuration 

 Abstract: In this article, the deformed state processes of mesh plates with complex configurations are 
modeled mathematically. Specifically, a computational algorithm comprising of the R-function methods of 
V.L. Rvachev (RFM) and the Bubnov-Galerkin method is applied. The mathematical model describes the 
behavior of mesh plates under external loads by representing equilibrium equations in a Cartesian coordinate 
system. The solution structures are built using constructive RFM approaches, and discretization is carried 
out with the Bubnov-Galerkin technique. Computational experiments are conducted to determine the 
deformation characteristics of mesh plates with intricate geometries. The proposed approach significantly 
reduces the computational complexity and increases the accuracy of results when compared to conventional 
analytical methods. Furthermore, the algorithm enables numerical analysis of rhomboidal and hexagonal 
plate configurations under different boundary conditions. These results may be utilized in designing 
lightweight yet structurally efficient components in aerospace, civil, and mechanical engineering. 
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1. Introduction 
 
Mesh shells and plates are common structural 

forms in different technological domains as well as 
the construction sector. In this sense, there has been 
a recent surge in interest in these structures both 
domestically in our country and elsewhere. The high 
industrial production of the primary structural 
components and a notable rise in the walls of their 
ready structures, the objectivity of the products, and 
the potential for broad unification of them not only 
for individual structures but also for buildings with 
different objects, loads, and operation patterns are 
the benefits of building structures. The theory of 
mesh systems was developed with contributions 
from well-known scientists including L.N. Lubo, 
B.A. Mironkov, G.I. Pshenichnov, V.K. Kabulov, 
T.Sh. Shirinkulov, T.Buriev, and K.S.Abdurashitov, 
among others. However, the configurations of these 
mesh plates have classical forms in many of the 
investigated engineering practice issues where the 
stress-strain condition of the plates is being studied. 
However, in engineering practice, complicated 

mesh plate designs present a problem for designers 
and design engineers to solve mathematically. 

This makes the development of a computational 
algorithm and the software that goes along with it, 
as well as the computation of mesh plates with 
intricate configurations, highly pertinent. 

 
2. Materials and methods 
 
In the development of the theory and methods 

for calculating lattice shells and plates, significant 
contributions were made by such well-known 
scientists as G.I. Pshenichnikov, V.V. Kuznetsov, 
L.N. Lubo, B.A. Mironov, V.I. Volchenko, 
R.I.Khisamov, A.L. Filin, I.G. Tagiev, 
A.R.Rzhanitsyn, B.S. Volikov, V.V. Bolotin and 
others [1-11]. 

The work [6] presents a new, fairly accurate 
method for calculating the processes and stability of 
lattice cylindrical shells, which allows taking into 
account the main features of the structure under 
consideration. The results obtained earlier by the 
author, valid for shells with a square mesh, are 
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generalized to the case of a shell with a rhombic 
lattice. 

The theory of thin elastic lattice shells and 
plates, as well as its applications in technology, are 
presented in [7]. The main attention is paid to the 
issues of the theory of single-layer structures, mesh, 
which are rod systems. 

Based on the hypotheses of the technical theory 
of thin-walled rods by V.Z. Vlasov, a system of 
differential equations of thin-walled composite rods 
with variable stiffness characteristics with 
elastically compliant shear connections was 
obtained by the displacement method [8]. It is 
shown that in this problem, the force method leads 
to a system of integro-differential equations if the 
shear forces in the seams are taken as the main 
unknowns. The solution of the problem in the case 
of static variability of stiffness characteristics is 
carried out by the perturbation method using Green's 
functions. 

In [9], the effect of rigid gussets in nodes and the 
frequency and shape of oscillations of trusses with 
different numbers of panels are considered. Loads 
and masses are taken at the nodes. The effect of 
changing the stiffness of rods on the displacement of 
truss nodes is investigated. 

In [10], theoretical studies of the strength of a 
two-support beam with a defect arbitrarily located 
along the length and height are presented. The beam 
is loaded with a concentrated force. Calculation 
formulas for determining the forces in the transverse 
ties are derived. 

The author of the work [11] proposes to present 
an expression for the differential operator and 
derivatives under limiting and boundary conditions 
in finite differences for calculating a statically 
indeterminate beam of an asymmetric cross-section 
made of a material with different modulus. The 
corresponding system of algebraic equations is 
solved by the Seidel method, modified by the 
authors due to the presence of limiting conditions. 
An example of calculation is given. 

In this research [12], vibration analysis of a thin 
elastic circular Aluminium plate has been 
investigated both experimentally and 
computationally. First six natural frequencies of thin 
Aluminium circular plate having diameter 220mm 
were calculated by performing modal analysis on 
ANSYS. In order to perform computational study, 
multizone quad/tri method was applied on the thin 
elastic circular plate to generate the quadrilateral 
mesh and simply supported boundary condition was 

applied. Mesh independence study was performed 
by varying the size of the mesh through sizing option 
and examining the natural frequency. To determine 
fundamental natural frequency experimentally, 
forced vibrations were induced into the plate with 
the help of system comprises of DC motor, steel 
wire and cam with the eccentricity of 8mm. 

In this work [13], the conventional method of 
modeling and analyzing cold plates involves the use 
of empirical correlations to predict pressure drop for 
standard fin geometries used for various designs. A 
more reliable approach to pressure drop prediction 
is to perform a detailed CFD analysis of the cold 
plate design. Conventional CFD analysis of fluid 
flow through cold plates requires filling in details of 
the cold plates (passages and fin structures) as well 
as fluid volumes in the cold plates. For complex fin 
patterns produced by additive manufacturing, this 
can be very computationally expensive. A new 
analytical method for CFD analysis of the cold plate 
structure with only the captured fluid volume was 
developed, which significantly reduced the time 
required to mesh and solve complex fin structures in 
cold plate fluid passages. 

Additive manufacturing (AM) technologies 
offer design freedom to create complex metal 
structures with significantly increased area-to-
volume ratios with minimal time and cost. This 
allows creating a new generation of two-phase 
exchangers, thermosyphons and heat pipes. The pile 
design has been identified as the main parameter 
affecting the thermal performance of heat pipes and 
steam chambers. Traditionally, these rods were 
constructed by sintering metal powder or welding 
wire mesh welded to the inner wall of the heat pipe. 
This research paper [14] investigates the use of 
Laser Powder Bed Fusion (L-PBF) to construct AM 
microstructured rods that cannot be produced using 
conventional methods. Four pore configurations are 
produced using L-PBF: (i) body-centered cubic 
(BCC), (ii) face-centered cubic (FCC), (iii) regular 
cubic (SC), and (iv) Voronoi. The porosity of each 
configuration was varied by varying the strut 
thickness from 0.25 mm to 0.35 mm. The capillary 
performance of these rods was tested through a rate 
of rise experiment in which the sample is immersed 
vertically in a well of ethanol and the mass rate is 
recorded using an accurate laboratory scale. 

In addition to the classical methods for 
analyzing the stress-strain behavior of lattice shells 
and plates, recent studies have explored the 
nonlinear deformation processes of anisotropic 
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plates under complex fields. For instance, in [26], 
the authors developed a mathematical model based 
on the Hamilton-Ostrogradsky variational principle 
and Kirchhoff-Lyaw hypothesis to study the thermo-
electro-magneto-elastic behavior of plates with 
intricate shapes. Their analysis integrated 
electromagnetic and thermal effects using Cauchy 
relations, Hooke's law, and Maxwell’s equations. 
Furthermore, a related investigation [27] addressed 
the independent solution of the magnetoelastic 
problem for thin compound-shaped isotropic plates. 
The study applied a variational approach to derive 
plate motion equations under electromagnetic fields, 
contributing to the theoretical base of compound 
geometries. These approaches reflect an increasing 
trend toward incorporating multi-physical 
interactions in plate modeling tasks. 

From the review of studies it follows that among 
the considered mesh plates the classical 
configurations have practical significance. Even 

their algorithm has not been developed when the 
mesh plate configurations have complex shapes. 

 
3. Results 
 
Equilibrium equations for a mesh plate element 

in a Cartesian coordinate system relatively have the 
form [1-3] 

 

+ + = 0 (1) 

where 

= , =   

 
Here Z is the external load; the parameters are 

bending and torque; lateral forces. 
Bending and torque moments, when the number 

of rods is equal to n (general case), are determined 
by the following formulas: 

 
 

= ( + + 2 )
= ( + + 2 )

= ( ) + ( ) + ( ), = 1,2
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,
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( ) = ( ) = , ( ) = 2 ,

( ) = ( ) = , ( ) = 2 ,

= / , = / , = / .

 (4) 

 
 
Let's characterize the parameters provided in 

(4). Ii, Ci show the relationship between the rods' 
matching stiffness properties and the separation 
between their axes.; ai – distance between the axes 
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of adjacent rods; Fi – rod area;  main, 
central moments of inertia; n – number of mesh bar 
families;  angle between axis  and the axis 
of the rod (measured from the axis α in the direction 
of the axis β);  

= , = , =  

Substituting (2) taking into account (3) into (1), 
we obtain the equilibrium equation of mesh plates 
with respect to deflection – W: 

 
 

( + ) + 2( + ) + (3 + )

+2( + ) + ( + )

+[2 ( + ) (2 )]

+[3 (2 ) + (3 )]

+ (3 + ) + 3 (2 + )]

+[ (2 + ) + 2 ( + )]

+[ ( + ) (2 ) + (2 + )

+ (2 + ) + (2 + )]
x

+[ ( ) + (2 + ) + ( + )]

= 0

 (5) 

where 

( ) = (1 6 ) , ( ) = 2  (6) 

 
Substituting (4) into (3), then the resulting relations into (2), we have: 
 

= ( + ) ,

= ( + ) ,

= ( ) ,

= ( ) .

 (7) 

−ii JJ 31 ,

−iϕ α

,cos,sin iiii CS ϕϕ ==



31

Fakhriddin Nuraliev et al.

= ( + ) ,

= ( + ) ,

 

(8) 

 
By virtue of (7), equation (5) takes the form 
 

( + ) = 0 (9) 

 
Equation (5) is solved under the condition 
 

= 0, | = 0 (10) 

 
where n – outer normal direction; (-variation 
operation sign;  normal bending moment,  
 

= + 
+( + ) + 2  (11) 

 
 normal ground reaction, having the form 

 

= + , 
= + , 

= ( ) + 
+( ) = 

= 2 +
1
2

( ) 2 , 

(12) 

 
here (-angle between outer normal and axis х; W – 
plate deflection; W – plate deflection; S – the length 
of the arc for the boundary of the Г region of the 
plate  

For the purpose of computing mesh plates with 
complex shapes, this section presents a 
computational technique that builds a joint 
combination of R-function approaches by V.L. 
Rvachev and Bubnov Galerkin. The procedure 
consists of two steps: 

Constructing coordinate sequences, also known 
as solution structures; 

- building equations for solving problems 
(discretization by spatial variables) using the 
Bubnov-Galerkin method;  

- approximating double integral values; 
 – solving equations for solving problems;  
- determining necessary parameter values; 
 – registering calculation outcomes. 
Depending on how the mesh plate's edges are 

secured, differentiable equations (1.3.5) for the 
mesh plate's equilibrium can be solved given 
suitable boundary conditions based on the number 
of families of rods. Condition (10), in a generalized 
form, determines these boundary conditions. 

Generally speaking, we use the form to represent 
the coordinate sequences that match criterion (5). 

 

=  (13) 

 
where Сi – unknown coefficients to be determined; 

 basis system of coordinate functions, meeting 
the boundary criteria, which were created using V.L. 
Rvachev's R-function approach. 

If we replace (13) with (5), we get the following 
system of algebraic equations by applying the 
Bubnov-Galerkin techniques; 

 
AC=f (14) 

Where 
= { }, ( ) = × , 

= { }, = { }, ( ) = 
= × 1, ( ) = × 1, 

 
Here in general elements  and  for 

equations (5) have a look 
 

= Ã  (15) 

=
 

(16) 

Here 

−nM

−nR

−iϕ
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 : =  ( + ) + 2( + ) + (3 + )

+2( + ) + ( + )

+[2 ( + ) 2 (2 )]

+[3 (2 ) + (3 )]

+[3 (2 + ) + (2 + )]

+[ ( + )]

+[ ( + ) + (2 ) + (2 + )

+ ( + ) + (2 + )]

+[ ( ) + (2 + ) + ( + )]

 (17) 

 
 
Equations (14) and (15) respectively assume the 

following form if we examine specific instances of 
equations (5). 

 

= ( +

+ )  
(18) 

=
 

(19) 

 
Here a, depending on the consideration of 

equations (15) or special cases, respectively, takes 
the following values: 

 

а:= ;а:=  ; а:=  ;  

In this case, the expressions for  in equations 
(15) or others similar in form to expressions (18), 
difference is, expressions here  will 
differ. 

Equation (16) is solved by the Gaussian 
elimination method. Unknown coefficients Сi are 

determined. Then substituting the values Сi into 
(13), we will find solution W. Afterwards, the 
transverse forces of the plate and the values of its 
bending and torque moments are calculated using 
the structural formulas. Further, using the known 
values of bending  and torque  
moments and shear forces  force values are 

calculated  and moments rod. 
We will see that the precise Gauss formula is 

used to determine the value of double integrals. 
Let's now examine how structural formulas are 

actually constructed. Anisotropic plate structural 
formulas are utilized for this purpose; the lone 
exception being when the coefficient  is changed 

into  in case of mesh plates.  
when the edges of the plate are rigidly clamped, 

the structure of the solution has the form [4-5]: 
 

=  (20) 
 
The simply supported boundary condition is 

now examined. In this instance, the solution's 
structure takes the form 
 

I
Z Z
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( ) =
2( )

(2 + ) + 2
1

+  (21) 

 
 
We will look through the shifted boundary 

condition. For example, when Г1 – area Г1 –  rigidly 
clamped plate, and the rest Г1 = Г – Г1 free, hen the 
solution structure according to [4-5] has the form  

 
 

 =  + + × 

× { {
3

( ( )[1
2

( )] + ( ) 2 ( ))}
1 ( )} ( ) 

(22) 

 
 
here  undefined components of structural 
formulas, which are usually presented in the form 
[4-5]: 
 

= , s=1,2; (23) 
 
where  selected sequence of polynomials, 
such as power polynomial, Chebyshev polynomial, 
trigonometric polynomial, etc.;  
correspondingly normalized boundary equations  
and  areas  and . 

 
4. Discussion 
 
Calculate mesh plates with a rhomboidal form is 

the focus of this section. Here the plate arrangements 
with their complex shapes are considered [7–10]. 

Assuming that the edges of the hexagonal plate 
(Fig. 1) are simply supported and firmly clamped, 
we can compute the surface area of the plate. 

The problem comes down to integrating 
equation (15), i.e. 

 

+ + =  (24) 

in case 
 

| = 0, | = 0 (25) 
 
The geometry equation of the region in this case 

has the form: 
 

=  (26) 

=
3
4

3
,  

= , = 

= , =
3 3

2
, 

= 3 + 3 2, 

=
3

2 3 + 3 +
2

, 

 = 3 3 + /2 

 

 
Take note that the formulas for bending 

moments for traditional orthotropic elastic plates 
differ slightly from the expressions for moments in 
form used here. Consequently, we describe the 
moments of mesh plates in standard form and create 
structural formulas for expressing them. 

For this purpose, consider the relation: 
 

= 2 ( + ) + ( ) , 

= 2 ( ) + ( + ) , 

= 2 (2 + 2 ) , 

= 2 ( 2 2 )  

(27) 

−21 ,ФФ
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We will rewrite the relation (27) in form  
 

= + , 

= + , 

= , 

= .  

(28) 

where 
= 2 ( + ), 

 

=
( )

+
, 

 
= 2 ( + ), 

 

=
( )

+
, 

 
= / , = / , 

 
= , = , 

 

= 2 (2 + 2 ) , 

 

= 2 ( 2 2 )  

 

 

Rhomboidal plate structure  Thus s=c и 

,  ; 2121 cccc vvDD ==  therefore, we consider and 

 we can rewrite these formulas in the form 
 

= + , 

 

= + , 

 
= = 4  

(29) 

 
where  

According to (29) we will have this 
 

= +  (30) 

so 
. 

Here n – outer normal,  – tangent. 
Considering the remarks above, relations of the 

form determine the boundary condition of a simply 
supported plate with a rhomboidal structure. 

 

| = 0, + & = 0 (31) 

 
Consequently, the structure of this boundary 

condition's solution in this instance is shown as 
 

=  

2
[ ( + ) + 2 ] 

(32) 

 
We note that if the stiffness of the rods is not 

taken into account  then С=0, 
 с =1 and (3.2.7) takes the form 

 
=  

=
2

[ ( + ) + 2 ] 
(33) 

 
Let us now examine the rhombic structure's 

hexagonal plate, as depicted in Figure 1. 
Let a firmly clamped rhomboidal mesh plate form 
the image's border in Figure 1. Then, the structure of 
the answer to this issue takes the following form: 

 
=  (34) 

 
Here  is found out with the formula (26) and 

is given as (23). 
 

 
Figure 1 – Complex poligon 
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x W n=3 c=20          
-1 0 

 

-0,9 0,00010152 
-0,8 0,00071714 
-0,7 0,00205652 
-0,6 0,00400341 
-0,5 0,00626503 
-0,4 0,00851907 
-0,3 0,01049807 
-0,2 0,01201645 
-0,1 0,01296362 

0 0,01328472 
0,1 0,01296362 
0,2 0,01201645 
0,3 0,01049807 
0,4 0,00851907 
0,5 0,00626503 
0,6 0,00400341 
0,7 0,00205652 
0,8 0,00071714 
0,9 0,00010152 
1 0          

 
Figure 2 – The figure shows numerical and graphical results for one of the sections1. 

 
 
Below (Fig. 2) the computational experiment's 

findings are displayed. 
 
5. Conclusions 
 
Summarize the key findings and their 

significance. Clearly state the main conclusions 
drawn from the study and their implications. Avoid 
introducing new data or extensive discussions not 
previously covered. 
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