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MODELING OF THE DEFORMED STATE
OF MESH PLATES USING COMPLEX CONFIGURATION

Abstract: In this article, the deformed state processes of mesh plates with complex configurations are
modeled mathematically. Specifically, a computational algorithm comprising of the R-function methods
of V.L. Rvachev (RFM) and the Bubnov-Galerkin method is applied. The mathematical model describes
the behavior of mesh plates under external loads by representing equilibrium equations in a Cartesian
coordinate system. The solution structures are built using constructive RFM approaches, and discretiza-
tion is carried out with the Bubnov-Galerkin technique. Computational experiments are conducted to
determine the deformation characteristics of mesh plates with intricate geometries. The proposed ap-
proach significantly reduces the computational complexity and increases the accuracy of results when
compared to conventional analytical methods. Furthermore, the algorithm enables numerical analysis
of rhomboidal and hexagonal plate configurations under different boundary conditions. These results
may be utilized in designing lightweight yet structurally efficient components in aerospace, civil, and
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mechanical engineering.

Keywords: mathematical modeling, stress-strain state, mesh plates with complex configurations, R-
function method (RFM), Bubnov-Galerkin method, computational mechanics.

1. Introduction

Mesh shells and plates are common structural
forms in different technological domains as well as
the construction sector. In this sense, there has been
a recent surge in interest in these structures both
domestically in our country and elsewhere. The high
industrial production of the primary structural
components and a notable rise in the walls of their
ready structures, the objectivity of the products, and
the potential for broad unification of them not only
for individual structures but also for buildings with
different objects, loads, and operation patterns are
the benefits of building structures. The theory of
mesh systems was developed with contributions
from well-known scientists including L.N. Lubo,
B.A. Mironkov, G.I. Pshenichnov, V.K. Kabulov,
T.Sh. Shirinkulov, T.Buriev, and K.S.Abdurashitov,
among others. However, the configurations of these
mesh plates have classical forms in many of the
investigated engineering practice issues where the
stress-strain condition of the plates is being studied.
However, in engineering practice, complicated
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mesh plate designs present a problem for designers
and design engineers to solve mathematically.

This makes the development of a computational
algorithm and the software that goes along with it,
as well as the computation of mesh plates with
intricate configurations, highly pertinent.

2. Materials and methods

In the development of the theory and methods
for calculating lattice shells and plates, significant
contributions were made by such well-known
scientists as G.I. Pshenichnikov, V.V. Kuznetsov,
LN. Lubo, B.A. Mironov, V.I. Volchenko,
R.I.Khisamov, A.L. Filin, [.G. Tagiev,
A.R.Rzhanitsyn, B.S. Volikov, V.V. Bolotin and
others [1-11].

The work [6] presents a new, fairly accurate
method for calculating the processes and stability of
lattice cylindrical shells, which allows taking into
account the main features of the structure under
consideration. The results obtained earlier by the
author, valid for shells with a square mesh, are

Licensed under CC BY-NC 4.0 27

(XAl


https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.26577/jpcsit2025333
https://orcid.org/0000-0002-0574-9278
https://orcid.org/0009-0002-4899-4502
https://orcid.org/0009-0001-3947-9499
mailto:nuraliev2001@mail.ru

Fakhriddin Nuraliev et al. Modeling of the deformed state of mesh plates using complex configuration

generalized to the case of a shell with a rhombic
lattice.

The theory of thin elastic lattice shells and
plates, as well as its applications in technology, are
presented in [7]. The main attention is paid to the
issues of the theory of single-layer structures, mesh,
which are rod systems.

Based on the hypotheses of the technical theory
of thin-walled rods by V.Z. Vlasov, a system of
differential equations of thin-walled composite rods
with  variable stiffness characteristics with
elastically compliant shear connections was
obtained by the displacement method [8]. It is
shown that in this problem, the force method leads
to a system of integro-differential equations if the
shear forces in the seams are taken as the main
unknowns. The solution of the problem in the case
of static variability of stiffness characteristics is
carried out by the perturbation method using Green's
functions.

In [9], the effect of rigid gussets in nodes and the
frequency and shape of oscillations of trusses with
different numbers of panels are considered. Loads
and masses are taken at the nodes. The effect of
changing the stiffness of rods on the displacement of
truss nodes is investigated.

In [10], theoretical studies of the strength of a
two-support beam with a defect arbitrarily located
along the length and height are presented. The beam
is loaded with a concentrated force. Calculation
formulas for determining the forces in the transverse
ties are derived.

The author of the work [11] proposes to present
an expression for the differential operator and
derivatives under limiting and boundary conditions
in finite differences for calculating a statically
indeterminate beam of an asymmetric cross-section
made of a material with different modulus. The
corresponding system of algebraic equations is
solved by the Seidel method, modified by the
authors due to the presence of limiting conditions.
An example of calculation is given.

In this research [12], vibration analysis of a thin
elastic circular Aluminium plate has been
investigated both experimentally and
computationally. First six natural frequencies of thin
Aluminium circular plate having diameter 220mm
were calculated by performing modal analysis on
ANSYS. In order to perform computational study,
multizone quad/tri method was applied on the thin
elastic circular plate to generate the quadrilateral
mesh and simply supported boundary condition was
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applied. Mesh independence study was performed
by varying the size of the mesh through sizing option
and examining the natural frequency. To determine
fundamental natural frequency experimentally,
forced vibrations were induced into the plate with
the help of system comprises of DC motor, steel
wire and cam with the eccentricity of 8mm.

In this work [13], the conventional method of
modeling and analyzing cold plates involves the use
of empirical correlations to predict pressure drop for
standard fin geometries used for various designs. A
more reliable approach to pressure drop prediction
is to perform a detailed CFD analysis of the cold
plate design. Conventional CFD analysis of fluid
flow through cold plates requires filling in details of
the cold plates (passages and fin structures) as well
as fluid volumes in the cold plates. For complex fin
patterns produced by additive manufacturing, this
can be very computationally expensive. A new
analytical method for CFD analysis of the cold plate
structure with only the captured fluid volume was
developed, which significantly reduced the time
required to mesh and solve complex fin structures in
cold plate fluid passages.

Additive manufacturing (AM) technologies
offer design freedom to create complex metal
structures with significantly increased area-to-
volume ratios with minimal time and cost. This
allows creating a new generation of two-phase
exchangers, thermosyphons and heat pipes. The pile
design has been identified as the main parameter
affecting the thermal performance of heat pipes and
steam chambers. Traditionally, these rods were
constructed by sintering metal powder or welding
wire mesh welded to the inner wall of the heat pipe.
This research paper [14] investigates the use of
Laser Powder Bed Fusion (L-PBF) to construct AM
microstructured rods that cannot be produced using
conventional methods. Four pore configurations are
produced using L-PBF: (i) body-centered cubic
(BCCQ), (i1) face-centered cubic (FCC), (iii) regular
cubic (SC), and (iv) Voronoi. The porosity of each
configuration was varied by varying the strut
thickness from 0.25 mm to 0.35 mm. The capillary
performance of these rods was tested through a rate
of rise experiment in which the sample is immersed
vertically in a well of ethanol and the mass rate is
recorded using an accurate laboratory scale.

In addition to the classical methods for
analyzing the stress-strain behavior of lattice shells
and plates, recent studies have explored the
nonlinear deformation processes of anisotropic
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plates under complex fields. For instance, in [26],
the authors developed a mathematical model based
on the Hamilton-Ostrogradsky variational principle
and Kirchhoff-Lyaw hypothesis to study the thermo-
electro-magneto-elastic behavior of plates with
intricate  shapes. Their analysis integrated
electromagnetic and thermal effects using Cauchy
relations, Hooke's law, and Maxwell’s equations.

their algorithm has not been developed when the
mesh plate configurations have complex shapes.

3. Results
Equilibrium equations for a mesh plate element

in a Cartesian coordinate system relatively have the
form [1-3]

Furthermore, a related investigation [27] addressed
the independent solution of the magnetoelastic 00 00, 70 |
problem for thin compound-shaped isotropic plates. ax, + dy ta= (1)

The study applied a variational approach to derive  where
plate motion equations under electromagnetic fields, 0H, oM, 0H, 0M,
contributing to the theoretical base of compound 1= dy  ox ' 2 ~ox ay

geometries. These approaches reflect an increasing
trend toward incorporating  multi-physical
interactions in plate modeling tasks.

From the review of studies it follows that among
the considered mesh plates the classical
configurations have practical significance. Even

Here Z is the external load; the parameters are
bending and torque; lateral forces.

Bending and torque moments, when the number
of rods is equal to n (general case), are determined
by the following formulas:

My = —(D11X1 + D12 * X2 + 2D16 * T)
My = —(Da1)1 + D1p * xo + 2D * T) 2)
Hy = Doy *O x1 + Dy *W xp + Dge W, i = 1,2

in which
1
Di; = Dyy + Ky1,D15 = D13 — K12, D16 = D16 — §K16:
1
D31 = D1 — K11, D32 = D2z + K2, D36 = D6 + §K26r \ (3)
D, = Dey + K7, D, = Doy — K3,
D} =D — KD i=12, )
n n \
Dy, = Elici‘t' Dy, = zliSiZCiZ»Dee = 2Dy,
i=1 i=1
n n n
Dy, = Zlisici3'D22 = zlisf}:Dze = Z 1;SC;, Dij = Dyj,
i=1 i=1 i=1
g 4)

n n
1 1 1
kS =KG =) GSCKY =) et cos2 ey,
i=1 i=1

n n
KD =k = z CiS?Ci K = Z C;S? cos 2 ¢,
i=1 i=1

K; = EiFi/a;, 1 = Fi1i/a;, C; = GiJ3i/q;- J

Let's characterize the parameters provided in
(4). I, C; show the relationship between the rods'

matching stiffness properties and the separation
between their axes.; a; — distance between the axes
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of adjacent rods; F; — rod area; J,;,J5;, — main,
central moments of inertia; n — number of mesh bar
families; @; — angle between axis « and the axis
of the rod (measured from the axis a in the direction

of the axis f); S, =sing,,C, =cosg,,

a*w
dxdy

2w 92w
ox2 't

x1 = —axz ’xl = —

Substituting (2) taking into account (3) into (1),
we obtain the equilibrium equation of mesh plates
with respect to deflection — W:

2 4 64W
(D11 + Kll)a_z + 2(D¢1 + D16) 535 %3 0y + (BD¢s + Ki6) 5573 %2 0y
+2(Dg, + K16)64—W + (D, + K )64—W
9% 93 22 T K1) 573
0 d 2w
[ (D11 + K11) (2D61 Kie)l w5 EE
W
+[3a (2Dg1 — K16) + @ (3Dss — K1)] %3 9y
9 D 3
+_(3D66 +K7) + 355 (2D62 tKie)l 5= 9% 02 (5)
3

0
[_ (2Dg; + Ky6) + 2 (Dzz + K11)]
02 0 02
+[ﬁ (D11 + K11)W (2Dg1 — K16) + E)_yz (2Dg1 + Ki6)

2

d
6 3y ———(2Dgs + K?) + = 3y? (2Dg; + Klé)]
62 2 62 62
[6 5 (D12 — Ki1) + (2D62 + Kie) + 73 3y? (D22 + K11)]
—7Z=0
where

h h
K = 2(1 — 6jfcH)ci, Ky = z Cicos®2 ¢, ©
i=1 i=1

Substituting (4) into (3), then the resulting relations into (2), we have:

4
\
M1=25QWUWWV+Q%WWG
=1
4
M, = Z siVi (isiVi + Cic;Viw,
" > (7
Hy = —Z Vi (ic;Vi — CiciV)w,
=1
4
H, = —z sV (i Vi = CiciViw.
=1
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4
Q= —Z V2 (Lic;V; + CisiApw,
T (8)
Q= —Z V2 (IisiV; + Cic;Apw,
i=1

By virtue of (7), equation (5) takes the form

4
Z V2 (1,V? + C,SHw — 2 = 0 )

=1

Equation (5) is solved under the condition

ow
Mn6—‘ — 0,R,6W]|; = 0 (10)

on

where n — outer normal direction; ([J-variation

operation sign; M, — normal bending moment,

M, = M, cos® a + (11)
+(H; + Hy)cosasina +M,sin2a

R, — normal ground reaction, having the form

oM,t
R, =0Qn t—7

Qn=0Qicosa+Q,sina,
M, = H,(cos? a — sin® a) +
+(M; — M) cosasina =

(12)
1
=H; cosZa+E(M2 —M,;)sin2a,

here ((J-angle between outer normal and axis x; W —
plate deflection; W — plate deflection; S — the length
of the arc for the boundary of the I' region of the
plate

For the purpose of computing mesh plates with
complex shapes, this section presents a
computational technique that builds a joint
combination of R-function approaches by V.L.
Rvachev and Bubnov Galerkin. The procedure
consists of two steps:

Constructing coordinate sequences, also known
as solution structures;

- building equations for solving problems
(discretization by spatial variables) using the
Bubnov-Galerkin method;

- approximating double integral values;

— solving equations for solving problems;

- determining necessary parameter values;

— registering calculation outcomes.

Depending on how the mesh plate's edges are
secured, differentiable equations (1.3.5) for the
mesh plate's equilibrium can be solved given
suitable boundary conditions based on the number
of families of rods. Condition (10), in a generalized
form, determines these boundary conditions.

Generally speaking, we use the form to represent
the coordinate sequences that match criterion (5).

n
W= z Ci¢;
=1

where C; — unknown coefficients to be determined;

(13)

@; — basis system of coordinate functions, meeting

the boundary criteria, which were created using V.L.
Rvachev's R-function approach.

If we replace (13) with (5), we get the following
system of algebraic equations by applying the
Bubnov-Galerkin techniques;

AC=f (14)
Where
A ={a;;},dim(A) =nxmn,
C={c}f =i} dim(C) =
=nx1ldim(f)=nx1,

Here in general elements a; and S, for

equations (5) have a look

a;; = ff Aw,w;d0 (15)
0N

fi = jfﬂzwjdn (16)

Here
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4

- 0
AW; = (D11 +Ki1) Ot

+2(Dez + Ki6)

[2_(D11 + Kyp) — 2

0
+[3 a (2D61

d
+[3 @ (2Dgy + K1) +

0
+[@ (D22 + K11)] o3

62 2
+[W (D11 + Kq1) + 3

2

+6xay

2 2

0
+[W (D12 — K11) +

Equations (14) and (15) respectively assume the
following form if we examine specific instances of
equations (5).

94w, 94w,
94w,
+D, a—w)iwjdn

= ff aWjd.Q
0

Here a, depending on the consideration of
equations (15) or special cases, respectively, takes
the following values:

(19)

VA
= —a= % g A= Y 7 :
1 EJ, 1

In this case, the expressions for a;

in equations
(15) or others similar in form to expressions (18),
difference is, expressions here D,,D,,D; will

differ.
Equation (16) is solved by the Gaussian
elimination method. Unknown coefficients C; are

32

+ 2(Dg1 + D16) 55—

603

a
Ki6) +

o*w o*w
636 +(3D66+K16)a Zayz
4
+ (D22 + Ki1) vt
3w
(2D61 K16)] 3
63
(3D66 16)] a 2 ay
83
— _— 17
ax (2D62 +K16)] axayz ( )

3

2

0
3y (2Dg1 — K1) + W (2Dg1 + Ki16)

L 2w
(Des + K16) + ay? (2Ds + K16)] e
2 2
(ZDez + K16) + 72 (D22 + K11)] vz

determined. Then substituting the values C; into
(13), we will find solution W. Afterwards, the
transverse forces of the plate and the values of its
bending and torque moments are calculated using
the structural formulas. Further, using the known

values of bending (M,,M,) and torque (M,,)

moments and shear forces Q,,(Q,; force values are

calculated (N, ,S;) and moments M rod.

We will see that the precise Gauss formula is
used to determine the value of double integrals.

Let's now examine how structural formulas are
actually constructed. Anisotropic plate structural
formulas are utilized for this purpose; the lone

exception being when the coefficient D is changed

into D; in case of mesh plates.

when the edges of the plate are rigidly clamped,
the structure of the solution has the form [4-5]:
W = w?® (20)
The simply supported boundary condition is

now examined. In this instance, the solution's
structure takes the form
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R TR

We will look through the shifted boundary
condition. For example, when I} — area /' — rigidly

W = w?d, +
X {w? d, —{ 25D - 22 B*(Z)] +B,® —
287
here @,,®, — undefined components of structural

formulas, which are usually presented in the form
[4-5]:

ch = st Cls'abz: s=1,2; (23)

where {/;} — selected sequence of polynomials,
such as power polynomial, Chebyshev polynomial,
trigonometric  polynomial, etc,; W), 0, —

correspondingly normalized boundary equations /7,
and [/, areas [, and /,.

4. Discussion

Calculate mesh plates with a rhomboidal form is
the focus of this section. Here the plate arrangements
with their complex shapes are considered [7—10].

Assuming that the edges of the hexagonal plate
(Fig. 1) are simply supported and firmly clamped,
we can compute the surface area of the plate.

The problem comes down to integrating
equation (15), i.e.
D oW +D oW +D o'w = (24)
L oxt 30x20y2 oyt

2

1

21

clamped plate, and the rest /7 =1"—1 free, hen the
solution structure according to [4-5] has the form

wiof
2(w 2+w§)
245 0+ @) () (22)
S* KBz )} - S_ Bz }(le q)l)
1
in case
WIr =0,M,"=0 (25)

The geometry equation of the region in this case
has the form:

(26)

wy = f1 Ao f3, 03 =

—f4/\0f5 AR fx_y)

(\/_+\/_x—y)\/_
(\/_+\/_x+y)

fo=-2

fs—(\/_ \/_X+y)/2

Take note that the formulas for bending
moments for traditional orthotropic elastic plates
differ slightly from the expressions for moments in
form used here. Consequently, we describe the
moments of mesh plates in standard form and create
structural formulas for expressing them.

For this purpose, consider the relation:

) ) 5 0w ZE)ZW
M1=2C (IC +Cs )W-}_(I_C)Sa_yz'

%w 02w
M, = 252 [(1 - C)CZW'F (152 + CCZ)W ,

2
) 27

0°w

H, = —2c?(2Is?+C 2¢)——,
1 c*(2Is cos qb)axa

2%w

H, = 2s%(C 2¢ — 2Ic?
5 s“(Ccos2¢ C)axa
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We will rewrite the relation (27) in form

0%w 0%w
Ml =ch W-I_UZCW )
0w 02w
MZ = DZC W'}‘Ulcm )
U - 0%w
1 — al axayi
_ 9%w
= *2 dxdy’

(28)

H,

where
Dy, = 2c%(Ic? + Cs?),

(I - C)s?
Ve =12 4 052

Dy, = 2s%(Is? + Cc?),

(I - C)c?
Vie = 152 1 o2

C = GJs/a,1 = E};/a,

C=cos¢,S =sing,

0w
a; = —2c?(2Is? + C cos 2 ¢) 530y

9%w

a, = 2s*(Ccos2¢p — 2Ic?) 3x0y

V4
Rhomboidal plate structure @ = Z Thus s=c

D, =D, v, =v,., therefore, we consider and

J; =0 we can rewrite these formulas in the form

0%w 2w
M1=DC F-FUCW B

x
2%w
Y )

H1 = H2 == _41C252

2%w

(29)
M, =D, W-I_

where Do =D =D,0,v, =v,, =V,,.

According to (29) we will have this

34

2%w 2%w
M, =D, _anz + v, _612
)

M, =M, cos’a+M,sin” a+2M_,sinacosa .

(30)

Here n — outer normal, [ — tangent.

Considering the remarks above, relations of the
form determine the boundary condition of a simply
supported plate with a rhomboidal structure.
wir =0, (2% 4, 2 ‘ 0 (3
r =0, % =
on2 ~ ° 912 ) [&,

Consequently, the structure of this boundary
condition's solution in this instance is shown as

W =wd-—

w? _ i (32)

We note that if the stiffness of the rods is not

taken into account J; =0, then C=0,
v =1 and (3.2.7) takes the form
W=wd-
Ik i i (33)

Let us now examine the rhombic structure's
hexagonal plate, as depicted in Figure 1.
Let a firmly clamped rhomboidal mesh plate form
the image's border in Figure 1. Then, the structure of
the answer to this issue takes the following form:

W =w?o (34)

Here @ is found out with the formula (26) and
D is given as (23).

&
g

Figure 1 — Complex poligon

\4
x
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X W n=3 ¢c=20
-1 0
0,9 0,00010152
-0,8 0,00071714 W n=3 c=20
0,7 0,00205652
0,6 0,00400341 0,014
-0,5 0,00626503 0.012
04 0,00851907
0,3 0,01049807 0.0 / \
0,2 0,01201645 0,008
-0,1 0,01296362 = 008 / \
0 0,01328472 ' / \
0,1 0,01296362 0,004 / \
0,2 0,01201645 0,002
03 0,01049807
0.4 0,00851907 0 rrrrrrrrrr
0.5 0.00626503 13 5 7 9 1113 15 17 19 21
0,6 0,00400341 AB
0,7 0,00205652
0,8 0,00071714
0,9 0,00010152
1 0

Figure 2 — The figure shows numerical and graphical results for one of the sections].

Below (Fig. 2) the computational experiment's
findings are displayed.

5. Conclusions

Summarize the key findings and their
significance. Clearly state the main conclusions
drawn from the study and their implications. Avoid
introducing new data or extensive discussions not
previously covered.
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