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Abstract. This article addresses the challenge of improving object detection accuracy in video data 
captured under low-light conditions. Modern video detection systems–particularly in areas such as se-
curity, autonomous systems, and medicine–often suffer from reduced accuracy due to poor lighting. The 
proposed method is based on the integration of the YOLOv5 object detection model with a variety of 
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bilateral filtering, the Non-Local Means algorithm, Gray-World and Max-RGB balancing schemes, as 
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1. Introduction 
 
The quality of video captured under low-light 

conditions significantly deteriorates, negatively 
impacting the accuracy of object detection 
algorithms [1]. Low contrast, high noise levels, and 
uneven light distribution in images hinder informed 
decision-making in domains such as security, video 
surveillance systems, medical diagnostics, and 
autonomous control [2]. Although modern 
approaches–particularly those based on 
convolutional neural networks (CNNs)–
demonstrate high effectiveness in object detection, 
poor-quality input data in low-light environments 
reduces the overall performance of such systems [3]. 

Studies have shown that preprocessing 
techniques such as CLAHE, gamma correction, 
histogram equalization, Gaussian blur, bilateral 
filtering, as well as Retinex and MSRCR methods, 
can improve image quality, enhance contrast, and 
reduce noise [4],[5]. However, selecting optimal 
parameters to ensure the efficiency of these methods 
remains a challenging task. To address this issue, 
genetic algorithms are employed for automated 
parameter optimization [6]. Implemented using the 
DEAP library, genetic algorithms are based on 

principles of natural evolution, allowing for 
automatic tuning of filter parameters and improved 
YOLOv5 detection performance [6]. Due to the high 
computational demand, the use of parallel 
computing methods is crucial. Python's 
multiprocessing module enables the utilization of 
multiple CPU cores, significantly reducing the 
algorithm’s execution time. 

This project proposes the development of an 
integrated system combining the YOLOv5 video 
detection model, preprocessing techniques, and 
genetic algorithms to improve the accuracy and 
reliability of object detection in images captured 
under low-light conditions. The main objectives of 
the project include enhancing image quality through 
preprocessing, implementing real-time detection 
with YOLOv5, automatically optimizing filter 
parameters using genetic algorithms, and 
introducing parallel computing to improve the 
overall system performance [1],[4],[6],[8]. 

 
2. Methods and Materials 
 
This section provides a detailed overview of the 

main research methods and materials used in the 
study. Throughout the project, the PyTorch deep 
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learning library was employed to train neural 
networks and configure the YOLOv5 model [17]. 
The project focuses on enhancing the accuracy of 
object detection in video data captured under low-

light conditions. To achieve this objective, an 
integrated system was implemented, combining 
preprocessing techniques, the YOLOv5 detection 
model, and genetic algorithms. 

 
 

Figure 1 – Methods applied within the framework of the project. 
 
 
In images captured under low-light conditions, 

issues such as low contrast, high noise levels, and 
uneven light distribution are commonly 
encountered, making accurate object detection 
challenging. The processing of such images has 
been extensively studied using a variety of 
preprocessing techniques, as illustrated in Figure 1. 
For instance, the CLAHE method enhances local 
contrast and improves image quality, while Gamma 
Correction adjusts brightness to restore a more 
natural appearance. Histogram Equalization 
balances bright and shadowed areas, and Gaussian 
Blur along with Bilateral Filtering reduces noise 
while preserving sharp edges. The Non-Local 
Means method performs filtering based on the 
similarity of image patches. Gray-World and Max-
RGB techniques adjust color balance, while Retinex 
and MSRCR optimize lighting and color to provide 
natural saturation and contrast levels that 
approximate human visual perception. All of these 
methods have been implemented using the OpenCV 
library in the Python environment [18]. Each 
contributes to improved image quality and, when 

automatically optimized using genetic algorithms, 
significantly enhances the input data quality for the 
YOLOv5 model. 

Convolutional Neural Networks (CNNs) are 
widely used for the automatic detection and 
localization of objects and play a crucial role in image 
processing. Deep neural networks, particularly CNN 
architectures, have broad applications in image 
analysis and object detection. A detailed explanation 
of their fundamentals and effectiveness is provided in 
[16]. The YOLO model represents one of the state-
of-the-art techniques in this field. While earlier 
models such as YOLOv3 [9] have been successfully 
applied for object detection, YOLOv5–being a more 
advanced version–performs more effectively under 
low-light conditions. As shown in Figure 2, the 
YOLOv5 architecture processes the entire image area 
in a single pass, allowing real-time object detection 
with high accuracy [1]. Its architecture includes 
components such as an anchor-based head, a Feature 
Pyramid Network (FPN), and Cross Stage Partial 
(CSP) blocks, all of which contribute to its increased 
speed and performance.

 
 

Figure 2 – YOLOv5 Architecture. 
 

 
Manual selection of preprocessing method 

parameters is a labor-intensive and subjective 
process. To address this issue, genetic algorithms 
(GAs) were employed in this project. Genetic 
algorithms are optimization techniques inspired by 
the principles of natural evolution. While Particle 
Swarm Optimization (PSO) [11] is also widely 
studied in the field of evolutionary computation, the 
GA method was selected for this work due to its 
demonstrated effectiveness in filter parameter 
optimization. In this method, optimal parameters are 
automatically selected through the processes of 
population generation, selection, crossover, and 
mutation [12],[13]. 

DEAP (Distributed Evolutionary Algorithms in 
Python) is a library designed for the convenient 

implementation of genetic algorithms in Python [6]. 
The integration of DEAP with PyTorch enabled the 
development of high-performance optimization 
models [17]. In the project, each individual is 
represented as a 10-dimensional vector encoding a 
set of filter parameters. The fitness function is 
defined as the average confidence score obtained by 
the YOLOv5 model during object detection. To 
facilitate parallel computing, the Python 
multiprocessing module is used, enabling the 
concurrent evaluation of multiple individuals. This 
significantly reduces the overall training and 
optimization time. 

The algorithmic structure of the project is 
organized according to the flowchart presented in 
Figure 3.
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significantly reduces the overall training and 
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Figure 3 – Flowchart of the genetic algorithm for processing images captured  
under low-light conditions and optimizing the YOLOv5 model. 

 
 
The operation of the genetic algorithm, as 

illustrated in Figure 3, begins with the formation of 
an initial random population. This population 
consists of multiple individuals, each representing a 
set of parameters used for the preprocessing of a 
specific image. Each individual is described by a 
parameter vector of the following form: 

 
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =  [𝑝𝑝𝑝𝑝1 ,𝑝𝑝𝑝𝑝2 , . . . , 𝑝𝑝𝑝𝑝10]       (1) 

 
where: 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 – the corresponding preprocessing 
parameters applied in filters such as CLAHE, 
Gamma Correction, Histogram Equalization, 

Gaussian Blur, Bilateral Filter, Non-Local Means, 
Gray-World WB, Max-RGB WB, Retinex, and 
MSRCR. 

Each of these filters is used to enhance image 
contrast, reduce noise, and improve lighting balance 
[2], [10], [5]. The parameter vectors allow for 
effective control over the image enhancement 
process. However, manual parameter selection often 
does not lead to optimal results, which creates a need 
for automated approaches. Studies have shown that 
evolutionary algorithms, including genetic 
algorithms, are highly effective in the automatic 
optimization of parameters [22].

 

 
 

Figure 4 – Placement of preprocessing filter arrays. 
 
 
These parameters are selected to enhance the 

video quality and are then evaluated using a fitness 
function. As shown in Figure 4, the preprocessing 
filters perform efficient vector operations using 
NumPy arrays, which increases computational 
performance [19]. 

Each individual (1) is used to process the image, 
and the resulting output is evaluated using the 
YOLOv5 model. Since the YOLOv5 model is 
widely studied in the literature as a real-time 
algorithm with high accuracy [1], [8], YOLOv5 
detects objects in the processed image, and their 
confidence score determines the individual's 
effectiveness. This process is described by the 
following fitness function: 

 
𝐹𝐹𝐹𝐹(𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖) = 1

𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖
 ∑ 𝐶𝐶𝐶𝐶𝑗𝑗𝑗𝑗

𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖
𝑖𝑖𝑖𝑖𝑖1                     (2) 

 
where: 

𝐹𝐹𝐹𝐹(𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖) – the fitness evaluation function of the 
YOLOv5 model for image 𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖; 

𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖 – the number of detected objects; 
𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖  – the number of identified objects; 
𝐶𝐶𝐶𝐶𝑗𝑗𝑗𝑗  – the confidence score for each detected 

object. 
This function demonstrates how well the 

YOLOv5 model is able to confidently detect objects 
in the processed image. If the image is processed 
well, YOLOv5 will detect the objects with a high 
confidence score, resulting in a higher fitness value. 

For example, let's assume that this individual, as 
shown in Figure 4, has the following parameters: 

 
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 

= [2.8, 1.4, 0.9, 3.0, 7.5, 4.2, 0.3, 0.9, 1.7, 1.1]  (3) 
 
After passing the appropriately processed image 

to the YOLOv5 model, the following objects were 

detected. The YOLOv5 model detected the object 
"knife" with a confidence of 88%, "gun" with 76%, 
and "phone" with 53%. 

𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖 = 3 – number of detected objects 
 

𝐶𝐶𝐶𝐶1 = 0.88, 𝐶𝐶𝐶𝐶2 = 0.76, 𝐶𝐶𝐶𝐶3 = 0.53 
 

𝐹𝐹𝐹𝐹(𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖) =  
1
3

(0.88 + 0.76 + 0.53) = 

=
2.17

3
= 0.7233 

 
Thus, the fitness value of this individual is 

0.723, which is a relatively good result. This 
function quantitatively evaluates the quality of the 
processed image based on the confidence values 
obtained from the YOLOv5 model. It serves as the 
basis for selecting individuals at the stages of 
selection, crossover, and mutation in the genetic 
algorithm, reflecting the effectiveness of 
preprocessing, which influences detection accuracy. 

Selection is one of the important stages of the 
genetic algorithm. At this stage, individuals with the 
best fitness scores are chosen to be transferred to the 
next generation. In the project, tournament selection 
is used as the selection method. According to this 
method, several individuals are selected randomly, 
and the one with the highest fitness function value is 
chosen. Tournament selection is known for its 
simplicity and stability, making it popular in 
evolutionary problems [22]. This approach ensures 
the preservation of diversity in the population and 
prevents getting stuck in local minima. 

After the selection phase, the genetic algorithm 
moves to the crossover phase, as shown in Figure 3. 
During the crossover stage, the parameters of the 
selected parent individuals are mixed, resulting in 
the formation of a new generation (offspring) of 
individuals.
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Figure 5 – First individual and second individual. 
 
 
As shown in Figure 5, a descendant (offspring) 

is generated from two parent individuals using the 
BLX-α (Blend Crossover) method. This method was 
selected due to its effectiveness, and in this study, 
the α coefficient is set to 0.5. Each parameter of the 
new individual is calculated using the following 
formula: 

 
𝐶𝐶𝐶𝐶𝑘𝑘𝑘𝑘  =  [𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚 − 𝛼𝛼𝛼𝛼 ∗ 𝑖𝑖𝑖𝑖] 𝑈𝑈𝑈𝑈 [𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 𝛼𝛼𝛼𝛼 ∗ 𝑖𝑖𝑖𝑖]    (4) 

 
where: 

𝐶𝐶𝐶𝐶𝑘𝑘𝑘𝑘  − parameter of the offspring (child gene); 
𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚 − the maximum and minimum 

values of the corresponding parameter from the two 
parent individuals; 

𝛼𝛼𝛼𝛼 ∈ [0,1]  − blending coefficient (set to 0.5 in 
this study); 

d = 𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚 the difference between parent 
parameter values; 

 
𝑈𝑈𝑈𝑈[. , . ]

−  𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑜𝑜𝑜𝑜𝑢𝑢𝑢𝑢 𝑑𝑑𝑑𝑑ℎ𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 
 [𝑖𝑖𝑖𝑖, 𝑑𝑑𝑑𝑑][𝑖𝑖𝑖𝑖, 𝑑𝑑𝑑𝑑][𝑖𝑖𝑖𝑖, 𝑑𝑑𝑑𝑑]. 

 
Example: 
 

𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 2.8 , 𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚 = 2.3 ,  
𝛼𝛼𝛼𝛼 = 0.5 𝑖𝑖𝑖𝑖 = 2.8 − 2.3 = 0.5 

𝐶𝐶𝐶𝐶1  =  [2.3 − 0.5 ∗ 0.5] 𝑈𝑈𝑈𝑈 [2.8 + 0.5 ∗ 0.5] = 
= [2.05] 𝑈𝑈𝑈𝑈 [3.05] 
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Figure 6 presents a graphical interpretation of 

the BLX-α crossover method. This method extends 
the boundaries of the search space, thereby 
increasing the likelihood of the genetic algorithm 
reaching globally optimal solutions. Moreover, the 
BLX-α crossover reduces the risk of getting trapped 
in local extrema and enables a more thorough 
exploration of the solution space. These 
characteristics make it an effective and reliable 
approach for high-dimensional parameter 
optimization problems, such as in image 
preprocessin-g tasks [15]. 

Following the crossover stage, a mutation 
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maintaining diversity within the population and for 
broadening the search space. The mutation process 
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variance of 0.25. Thus, the random value is 
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Figure 7 – Result after applying the mutation operator. 
 
 
In this case, the mutation values are randomly 

drawn from the distribution N(0,0.25) and added to 
the original parameter values. This approach 
promotes the exploration of new local extrema of the 
fitness function and helps move closer to a globally 
optimal solution. Figure 7 shows the results after 
applying the mutation operation. It illustrates 
graphically that even small deviations in parameters 
allow for a deeper exploration of the solution space. 

The DEAP (Distributed Evolutionary 
Algorithms in Python) library provides a simple and 
flexible framework for building genetic algorithms 
in Python. It includes pre-built components for 
population generation, fitness evaluation, selection, 
crossover, and mutation [6]. To ensure accurate 
object detection on low-light images using the 
YOLOv5 model, the integration of this architecture 
with a genetic algorithm demonstrated high 
precision even under challenging conditions [1]. 

One of the main limitations of genetic 
algorithms is the demand for substantial 
computational resources. This is particularly true 
during the fitness evaluation stage, as the YOLOv5 
model must be applied to each individual, 
significantly increasing computation time. To 
address this issue, parallel computing methods were 
employed in the study. Using the Python 
multiprocessing module, the fitness function (2) was 
executed in parallel across multiple CPU cores. This 
approach allows for simultaneous evaluation of 
several individuals and significantly reduces the 
total computation time. 

 
3. Results 
 
This section presents the results of the 

experimental study conducted within the framework 
of the project. The experiments were based on 
images acquired from an X-ray scanner under low-
light conditions, with the primary objective of 
detecting objects inside luggage.  

The dataset used for this study is the X-ray 
Baggage Dataset, which contains 5,000 X-ray 
images and was sourced from Kaggle, a publicly 
available dataset repository. These images simulate 

real-world security screening conditions, including 
various concealed objects captured under low 
illumination. The dataset was divided into 80% for 
training and 20% for testing. All images were 
resized to a uniform resolution of 640×640 pixels, 
as required by the YOLOv5 model. 

The dataset comprises 12 object classes, such as 
knife, gun, scissors, phone, battery, and others. The 
distribution of these classes is imbalanced, which 
was addressed using class weighting and data 
augmentation during training. 

Experiments were conducted on a MacBook Pro 
with an 8-core Apple M1 processor and 6 GB 
unified memory, including 4 performance and 4 
efficiency cores. Computations were executed using 
the Apple M1 GPU accelerated by Metal 
Performance Shaders (MPS). The software 
environment included Python 3.10, PyTorch (MPS 
backend), OpenCV, and Ultralytics YOLOv5. 
CUDA acceleration was not used. 

The research was structured into the following 
stages: object detection on the original 
(unprocessed) X-ray images using the YOLOv5 
model, evaluation of preprocessing techniques, 
measurement of YOLOv5 performance metrics 
(mAP, Precision, Recall), parameter optimization 
using genetic algorithms, and acceleration of the 
computational process using the multiprocessing 
module. 

The study was organized into several key 
phases: object detection on the raw image, analysis 
of the impact of preprocessing techniques, 
evaluation of YOLOv5 performance, parameter 
optimization using genetic algorithms, and 
efficiency analysis of parallel computing methods. 

At the initial stage, images captured under low-
light conditions were fed into the YOLOv5 model 
without any preprocessing. Due to insufficient 
lighting, low contrast, and high noise levels, object 
detection accuracy was significantly reduced. In this 
case, the YOLOv5 model was only able to detect a 
subset of the objects. According to the experimental 
data, as shown in Figure 8, the average object 
detection confidence score on the original images 
was approximately 34%. This highlights the key 
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factors hindering the effective performance of 
YOLOv5 under low-light conditions [1],[10]. 

The annotated results of object detection on 
these images were used to visualize the exact object 
locations in the original state and to demonstrate the 

initial detection performance of the YOLOv5 
model. These baseline results were subsequently 
compared with the outcomes obtained after applying 
the genetic algorithm and preprocessing  
techniques. 
 
 

 
 

Figure 8. Object detection by the YOLOv5 model  
on the original image captured under low-light conditions. 

 
 
Preprocessing methods are one of the crucial 

stages in image quality enhancement. In this project, 
techniques such as CLAHE, gamma correction, 
histogram equalization, Gaussian blurring, bilateral 
filtering, and methods like Retinex and MSRCR 
were employed [23],[24]. These methods help 
enhance local contrast, adjust lighting balance, and 
efficiently filter out noise. As a result, the quality of 
the data fed into the YOLOv5 model was 

significantly improved, directly impacting the object 
detection accuracy in low-light conditions. The 
conducted experiments demonstrated that the 
detection accuracy on preprocessed images was 
significantly higher than in the original state. In 
some cases, as shown in Figure 9, the YOLOv5 
detection accuracy increased from 0% to 47%, 
which greatly enhanced the overall system 
performance.

 
 

 
 

Figure 9. Results of applying preprocessing methods. 
 

As a result of the genetic algorithm 
application, the preprocessing parameters are 
automatically tuned, significantly improving the 
object detection accuracy by the YOLOv5 model. 
Figure 10 shows that at the 18th epoch, the 
detection accuracy reached 58.25%, representing 
a substantial improvement compared to the initial 

results. In this case, the following methods with 
parameters were used: CLAHE (1.05), Gamma 
Correction (1.77), Histogram Equalization (1.41), 
Gaussian Blur (6.98), Bilateral Filter (5.58), Non-
Local Means (9.54), Gray-World WB (0.80), 
Max-RGB WB (0.35), Retinex (1.00), MSRCR 
(1.73).

 
 

 
 

Figure 10. Best result of the 18th epoch achieved with the genetic algorithm and applied filters. 
 
 
The genetic algorithm operated over 20 epochs, 

with images saved at each stage showing the best 
results. Each image displayed the detected objects, 
accuracy metrics, and applied filters. This visual 
comparison allows for the evaluation of the 
optimization process's effectiveness, as shown in 
Figure 11.  

Object detection accuracy by the YOLOv5 
model on the original image (left) and the image 
processed using the genetic algorithm (right) is 
shown in Figure 12. For the original image, the 
model's average confidence level was 34.07%, and 
after optimization, it increased to 82.81%. These 
results clearly demonstrate the effectiveness of the 
automatic filter parameter tuning and preprocessing, 

as genetic algorithms select the most effective image 
processing method, improving the quality of input 
data for the YOLOv5 model and increasing object 
detection accuracy.  

In the project, genetic algorithms were 
implemented using the DEAP library (Distributed 
Evolutionary Algorithms in Python). This approach 
enabled the automatic optimization of filter 
parameters applied for image preprocessing [6]. 
During each epoch, the fitness values of individuals 
in the population gradually increased. According to 
the experimental results, as shown in Figure 13, the 
fitness value of the best individual, calculated based 
on the YOLOv5 model, reached a range of 85–87% 
by the final stage. 
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Figure 11. Collage composed of the best results from each epoch. 
 
 

 
 

Figure 12. Original and processed images, along with their accuracy. 
 
 

 
Figure 13. Accuracy chart across epochs. 

Due to the high computational load of the 
genetic algorithm, parallel computing methods were 
used in the project to reduce overall processing time. 
By using the built-in Python module 

multiprocessing, the fitness value of each individual 
was calculated in parallel across multiple cores. This 
method significantly reduces computation time, 
especially when dealing with large populations. 

 
 

Table 1. Comparison of accuracy and processing time on computers with 1 and 8 cores. 
 

Population Size Accuracy (1 core) Time (1 core) Accuracy (8 cores) Time (8 cores) 
30 81.21% 17 minutes 83.45% 5 minutes 
50 86.55% 33 minutes 85.72% 9 minutes 

100 87.71% 60 minutes 88.41% 16 minutes 
200 83.92% 100 minutes 85.43% 30 minutes 

Average 84.85% 52.5 minutes 85.75% 15 minutes 
 
 
In the experiment, tests conducted on computers 

with 1 and 8 cores using the same parameters 
demonstrated that the use of 8-core parallel 

computing reduces the execution time by 80-90%. 
A more detailed comparison of the results is 
presented in Table 1 and Figure 14. 

 

 
 

Figure 14. The relationship between accuracy and time versus population size (1 and 8 cores) 
 
 
These results demonstrate that the combination of 

DEAP + YOLOv5 + Multiprocessing significantly 
enhances the system's time efficiency and makes it 
suitable for real-time object detection tasks. The 
experimental data presented show that when detecting 
objects in images captured under low-light conditions, 
higher accuracy and more efficient time performance 
are achieved compared to traditional methods [1], [2], 
[3], [6]. The obtained results confirm the practical 
applicability of the system for use in areas such as 
security monitoring, video surveillance, medical 
diagnostics, and autonomous control. 

 
4. Conclusion 
 
In conclusion, this study comprehensively 

addressed the issue of improving object detection 
accuracy on video data captured under low-light 

conditions and demonstrated the effectiveness of the 
integrated system. Modern preprocessing methods, 
such as CLAHE, gamma correction, histogram 
equalization, Gaussian blur, bilateral filter, as well 
as Retinex and MSRCR methods [2], [3], were 
applied to images obtained under low-light 
conditions. These methods enhanced image 
contrast, reduced noise, and significantly improved 
overall quality, which allowed for substantial 
improvements in the input data quality for the 
YOLOv5 model. The integration of preprocessing 
methods significantly improved YOLOv5's ability 
to detect objects in low-light conditions. 
Experimental data showed that the model's average 
confidence level increased significantly, indicating 
the practical applicability of the system for real-time 
use in fields such as security monitoring, video 
surveillance, and autonomous control [1]. 
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During the study, genetic algorithms, 
implemented using the DEAP library, were used to 
automatically optimize filter parameters. The fitness 
values of the most effective individuals obtained 
through the GA steadily improved in each 
generation, which contributed to increased stability 
and accuracy of YOLOv5’s results. Additionally, 
the application of parallel computing via the Python 
multiprocessing module allowed for a significant 
reduction in experimental execution time–on 
average, the time per epoch was reduced by  
80–90%. This substantially improved the overall 
system performance and its efficiency for real-time 
use. 

Thus, the proposed architecture, combining 
DEAP, YOLOv5, and parallel computing methods, 
has proven effective in improving object detection 
accuracy in images captured under low-light 
conditions and represents a promising solution for 
practical applications in demanding fields. 

Overall, the proposed integrated system, 
combining the YOLOv5 model, preprocessing 
methods, and genetic algorithms, allowed for 
enhanced accuracy and reliability in detecting 
objects in images obtained under low-light 
conditions. This research demonstrated its practical 
applicability and made a significant contribution to 
the fields of security systems, monitoring, and 

autonomous control [1], [2], [6], [3]. Further 
research is recommended to deepen the study, 
improve parameter optimization methods, integrate 
additional object detection algorithms, and develop 
parallel computing architectures. 
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