
ISSN 2958-0846 eISSN 2958-0854 Journal of Problems in Computer Science and Information Technologies №2 (3) 2025 https://jpcsit.kaznu.kz

© 2025 Al-Farabi Kazakh National University 3Licensed under CC BY-NC 4.0

IRSTI 28.23.37 https://doi.org/10.26577/jpcsit20253201

Mukhtar Zhassuzak * , Farida Narkeshova ,

Zholdas Buribayev , Bazargul Matkerim

Al-Farabi Kazakh National University, Almaty, Kazakhstan
*e-mail: zhassuzak.mukhtar@gmail.com

DEVELOPMENT OF A GENETIC ALGORITHM
FOR OPTIMIZING CONVOLUTIONAL NEURAL NETWORKS

IN ORDER TO IMPROVE THE ACCURACY OF OBJECT DETECTION
IN DIFFICULT LIGHTING AND BACKGROUND CONDITIONS

Abstract. This article addresses the challenge of improving object detection accuracy in video data
captured under low-light conditions. Modern video detection systems–particularly in areas such as se-
curity, autonomous systems, and medicine–often suffer from reduced accuracy due to poor lighting. The
proposed method is based on the integration of the YOLOv5 object detection model with a variety of
image processing filters (including CLAHE, gamma correction, histogram equalization, Gaussian blur,
bilateral filtering, the Non-Local Means algorithm, Gray-World and Max-RGB balancing schemes, as
well as Retinex and MSRCR methods) and genetic algorithms. This approach enhances both the reliabil-
ity of detection and computational efficiency. Experimental evaluations demonstrate that the proposed
system achieves significantly higher object detection accuracy in low-light data compared to traditional
methods.

Key words: low-light images, object detection, image enhancement, preprocessing methods, CLA-
HE, gamma correction, histogram equalization, noise reduction, contrast enhancement.

IRSTI 28.23.37https://doi.org/10.26577/jpcsit20253201

Mukhtar Zhassuzak * , Farida Narkeshova , Zholdas Buribayev , Bazargul

Matkerim

Al-Farabi Kazakh National University, Almaty, Kazakhstan
*e-mail: zhassuzak.mukhtar@gmail.com

DEVELOPMENT OF A GENETIC ALGORITHM FOR OPTIMIZING CONVOLUTIONAL
NEURAL NETWORKS IN ORDER TO IMPROVE THE ACCURACY OF OBJECT DETECTION

IN DIFFICULT LIGHTING AND BACKGROUND CONDITIONS
Abstract. This article addresses the challenge of improving object detection accuracy in video data

captured under low-light conditions. Modern video detection systems–particularly in areas such as security,
autonomous systems, and medicine–often suffer from reduced accuracy due to poor lighting. The proposed
method is based on the integration of the YOLOv5 object detection model with a variety of image processing
filters (including CLAHE, gamma correction, histogram equalization, Gaussian blur, bilateral filtering, the
Non-Local Means algorithm, Gray-World and Max-RGB balancing schemes, as well as Retinex and
MSRCR methods) and genetic algorithms. This approach enhances both the reliability of detection and
computational efficiency. Experimental evaluations demonstrate that the proposed system achieves
significantly higher object detection accuracy in low-light data compared to traditional methods.

Key words: low-light images, object detection, image enhancement, preprocessing methods, CLAHE,
gamma correction, histogram equalization, noise reduction, contrast enhancement.

1. Introduction

The quality of video captured under low-light

conditions significantly deteriorates, negatively
impacting the accuracy of object detection
algorithms [1]. Low contrast, high noise levels, and
uneven light distribution in images hinder informed
decision-making in domains such as security, video
surveillance systems, medical diagnostics, and
autonomous control [2]. Although modern
approaches–particularly those based on
convolutional neural networks (CNNs)–
demonstrate high effectiveness in object detection,
poor-quality input data in low-light environments
reduces the overall performance of such systems [3].

Studies have shown that preprocessing
techniques such as CLAHE, gamma correction,
histogram equalization, Gaussian blur, bilateral
filtering, as well as Retinex and MSRCR methods,
can improve image quality, enhance contrast, and
reduce noise [4],[5]. However, selecting optimal
parameters to ensure the efficiency of these methods
remains a challenging task. To address this issue,
genetic algorithms are employed for automated
parameter optimization [6]. Implemented using the
DEAP library, genetic algorithms are based on

principles of natural evolution, allowing for
automatic tuning of filter parameters and improved
YOLOv5 detection performance [6]. Due to the high
computational demand, the use of parallel
computing methods is crucial. Python's
multiprocessing module enables the utilization of
multiple CPU cores, significantly reducing the
algorithm’s execution time.

This project proposes the development of an
integrated system combining the YOLOv5 video
detection model, preprocessing techniques, and
genetic algorithms to improve the accuracy and
reliability of object detection in images captured
under low-light conditions. The main objectives of
the project include enhancing image quality through
preprocessing, implementing real-time detection
with YOLOv5, automatically optimizing filter
parameters using genetic algorithms, and
introducing parallel computing to improve the
overall system performance [1],[4],[6],[8].

2. Methods and Materials

This section provides a detailed overview of the

main research methods and materials used in the
study. Throughout the project, the PyTorch deep

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.26577/jpcsit20253201
https://orcid.org/0000-0001-8164-8199
https://orcid.org/0009-0005-9347-5578
https://orcid.org/0000-0002-3486-227X
https://orcid.org/0000-0002-5336-687X
mailto:zhassuzak.mukhtar@gmail.com

4

Development of a genetic algorithm for optimizing convolutional neural networks in order ...

learning library was employed to train neural
networks and configure the YOLOv5 model [17].
The project focuses on enhancing the accuracy of
object detection in video data captured under low-

light conditions. To achieve this objective, an
integrated system was implemented, combining
preprocessing techniques, the YOLOv5 detection
model, and genetic algorithms.

Figure 1 – Methods applied within the framework of the project.

In images captured under low-light conditions,

issues such as low contrast, high noise levels, and
uneven light distribution are commonly
encountered, making accurate object detection
challenging. The processing of such images has
been extensively studied using a variety of
preprocessing techniques, as illustrated in Figure 1.
For instance, the CLAHE method enhances local
contrast and improves image quality, while Gamma
Correction adjusts brightness to restore a more
natural appearance. Histogram Equalization
balances bright and shadowed areas, and Gaussian
Blur along with Bilateral Filtering reduces noise
while preserving sharp edges. The Non-Local
Means method performs filtering based on the
similarity of image patches. Gray-World and Max-
RGB techniques adjust color balance, while Retinex
and MSRCR optimize lighting and color to provide
natural saturation and contrast levels that
approximate human visual perception. All of these
methods have been implemented using the OpenCV
library in the Python environment [18]. Each
contributes to improved image quality and, when

automatically optimized using genetic algorithms,
significantly enhances the input data quality for the
YOLOv5 model.

Convolutional Neural Networks (CNNs) are
widely used for the automatic detection and
localization of objects and play a crucial role in image
processing. Deep neural networks, particularly CNN
architectures, have broad applications in image
analysis and object detection. A detailed explanation
of their fundamentals and effectiveness is provided in
[16]. The YOLO model represents one of the state-
of-the-art techniques in this field. While earlier
models such as YOLOv3 [9] have been successfully
applied for object detection, YOLOv5–being a more
advanced version–performs more effectively under
low-light conditions. As shown in Figure 2, the
YOLOv5 architecture processes the entire image area
in a single pass, allowing real-time object detection
with high accuracy [1]. Its architecture includes
components such as an anchor-based head, a Feature
Pyramid Network (FPN), and Cross Stage Partial
(CSP) blocks, all of which contribute to its increased
speed and performance.

Figure 2 – YOLOv5 Architecture.

Manual selection of preprocessing method

parameters is a labor-intensive and subjective
process. To address this issue, genetic algorithms
(GAs) were employed in this project. Genetic
algorithms are optimization techniques inspired by
the principles of natural evolution. While Particle
Swarm Optimization (PSO) [11] is also widely
studied in the field of evolutionary computation, the
GA method was selected for this work due to its
demonstrated effectiveness in filter parameter
optimization. In this method, optimal parameters are
automatically selected through the processes of
population generation, selection, crossover, and
mutation [12],[13].

DEAP (Distributed Evolutionary Algorithms in
Python) is a library designed for the convenient

implementation of genetic algorithms in Python [6].
The integration of DEAP with PyTorch enabled the
development of high-performance optimization
models [17]. In the project, each individual is
represented as a 10-dimensional vector encoding a
set of filter parameters. The fitness function is
defined as the average confidence score obtained by
the YOLOv5 model during object detection. To
facilitate parallel computing, the Python
multiprocessing module is used, enabling the
concurrent evaluation of multiple individuals. This
significantly reduces the overall training and
optimization time.

The algorithmic structure of the project is
organized according to the flowchart presented in
Figure 3.

5

Mukhtar Zhassuzak et al.

Figure 2 – YOLOv5 Architecture.

Manual selection of preprocessing method

parameters is a labor-intensive and subjective
process. To address this issue, genetic algorithms
(GAs) were employed in this project. Genetic
algorithms are optimization techniques inspired by
the principles of natural evolution. While Particle
Swarm Optimization (PSO) [11] is also widely
studied in the field of evolutionary computation, the
GA method was selected for this work due to its
demonstrated effectiveness in filter parameter
optimization. In this method, optimal parameters are
automatically selected through the processes of
population generation, selection, crossover, and
mutation [12],[13].

DEAP (Distributed Evolutionary Algorithms in
Python) is a library designed for the convenient

implementation of genetic algorithms in Python [6].
The integration of DEAP with PyTorch enabled the
development of high-performance optimization
models [17]. In the project, each individual is
represented as a 10-dimensional vector encoding a
set of filter parameters. The fitness function is
defined as the average confidence score obtained by
the YOLOv5 model during object detection. To
facilitate parallel computing, the Python
multiprocessing module is used, enabling the
concurrent evaluation of multiple individuals. This
significantly reduces the overall training and
optimization time.

The algorithmic structure of the project is
organized according to the flowchart presented in
Figure 3.

6

Development of a genetic algorithm for optimizing convolutional neural networks in order ...

Figure 3 – Flowchart of the genetic algorithm for processing images captured
under low-light conditions and optimizing the YOLOv5 model.

The operation of the genetic algorithm, as

illustrated in Figure 3, begins with the formation of
an initial random population. This population
consists of multiple individuals, each representing a
set of parameters used for the preprocessing of a
specific image. Each individual is described by a
parameter vector of the following form:

𝑖𝑖 = [𝑝𝑝𝑝𝑝1 ,𝑝𝑝𝑝𝑝2 , . . . , 𝑝𝑝𝑝𝑝10] (1)

where: 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 – the corresponding preprocessing
parameters applied in filters such as CLAHE,
Gamma Correction, Histogram Equalization,

Gaussian Blur, Bilateral Filter, Non-Local Means,
Gray-World WB, Max-RGB WB, Retinex, and
MSRCR.

Each of these filters is used to enhance image
contrast, reduce noise, and improve lighting balance
[2], [10], [5]. The parameter vectors allow for
effective control over the image enhancement
process. However, manual parameter selection often
does not lead to optimal results, which creates a need
for automated approaches. Studies have shown that
evolutionary algorithms, including genetic
algorithms, are highly effective in the automatic
optimization of parameters [22].

Figure 4 – Placement of preprocessing filter arrays.

These parameters are selected to enhance the

video quality and are then evaluated using a fitness
function. As shown in Figure 4, the preprocessing
filters perform efficient vector operations using
NumPy arrays, which increases computational
performance [19].

Each individual (1) is used to process the image,
and the resulting output is evaluated using the
YOLOv5 model. Since the YOLOv5 model is
widely studied in the literature as a real-time
algorithm with high accuracy [1], [8], YOLOv5
detects objects in the processed image, and their
confidence score determines the individual's
effectiveness. This process is described by the
following fitness function:

𝐹𝐹𝐹𝐹(𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖) = 1

𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖
 ∑ 𝐶𝐶𝐶𝐶𝑗𝑗𝑗𝑗

𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖
𝑖𝑖𝑖𝑖𝑖1 (2)

where:

𝐹𝐹𝐹𝐹(𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖) – the fitness evaluation function of the
YOLOv5 model for image 𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖;

𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖 – the number of detected objects;
𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖 – the number of identified objects;
𝐶𝐶𝐶𝐶𝑗𝑗𝑗𝑗 – the confidence score for each detected

object.
This function demonstrates how well the

YOLOv5 model is able to confidently detect objects
in the processed image. If the image is processed
well, YOLOv5 will detect the objects with a high
confidence score, resulting in a higher fitness value.

For example, let's assume that this individual, as
shown in Figure 4, has the following parameters:

𝑖𝑖 =

= [2.8, 1.4, 0.9, 3.0, 7.5, 4.2, 0.3, 0.9, 1.7, 1.1] (3)

After passing the appropriately processed image

to the YOLOv5 model, the following objects were

detected. The YOLOv5 model detected the object
"knife" with a confidence of 88%, "gun" with 76%,
and "phone" with 53%.

𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖 = 3 – number of detected objects

𝐶𝐶𝐶𝐶1 = 0.88, 𝐶𝐶𝐶𝐶2 = 0.76, 𝐶𝐶𝐶𝐶3 = 0.53

𝐹𝐹𝐹𝐹(𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖) =
1
3

(0.88 + 0.76 + 0.53) =

=
2.17

3
= 0.7233

Thus, the fitness value of this individual is

0.723, which is a relatively good result. This
function quantitatively evaluates the quality of the
processed image based on the confidence values
obtained from the YOLOv5 model. It serves as the
basis for selecting individuals at the stages of
selection, crossover, and mutation in the genetic
algorithm, reflecting the effectiveness of
preprocessing, which influences detection accuracy.

Selection is one of the important stages of the
genetic algorithm. At this stage, individuals with the
best fitness scores are chosen to be transferred to the
next generation. In the project, tournament selection
is used as the selection method. According to this
method, several individuals are selected randomly,
and the one with the highest fitness function value is
chosen. Tournament selection is known for its
simplicity and stability, making it popular in
evolutionary problems [22]. This approach ensures
the preservation of diversity in the population and
prevents getting stuck in local minima.

After the selection phase, the genetic algorithm
moves to the crossover phase, as shown in Figure 3.
During the crossover stage, the parameters of the
selected parent individuals are mixed, resulting in
the formation of a new generation (offspring) of
individuals.

7

Mukhtar Zhassuzak et al.

Figure 4 – Placement of preprocessing filter arrays.

These parameters are selected to enhance the

video quality and are then evaluated using a fitness
function. As shown in Figure 4, the preprocessing
filters perform efficient vector operations using
NumPy arrays, which increases computational
performance [19].

Each individual (1) is used to process the image,
and the resulting output is evaluated using the
YOLOv5 model. Since the YOLOv5 model is
widely studied in the literature as a real-time
algorithm with high accuracy [1], [8], YOLOv5
detects objects in the processed image, and their
confidence score determines the individual's
effectiveness. This process is described by the
following fitness function:

𝐹𝐹𝐹𝐹(𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖) = 1

𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖
 ∑ 𝐶𝐶𝐶𝐶𝑗𝑗𝑗𝑗

𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖
𝑖𝑖𝑖𝑖𝑖1 (2)

where:

𝐹𝐹𝐹𝐹(𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖) – the fitness evaluation function of the
YOLOv5 model for image 𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖;

𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖 – the number of detected objects;
𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖 – the number of identified objects;
𝐶𝐶𝐶𝐶𝑗𝑗𝑗𝑗 – the confidence score for each detected

object.
This function demonstrates how well the

YOLOv5 model is able to confidently detect objects
in the processed image. If the image is processed
well, YOLOv5 will detect the objects with a high
confidence score, resulting in a higher fitness value.

For example, let's assume that this individual, as
shown in Figure 4, has the following parameters:

𝑖𝑖 =

= [2.8, 1.4, 0.9, 3.0, 7.5, 4.2, 0.3, 0.9, 1.7, 1.1] (3)

After passing the appropriately processed image

to the YOLOv5 model, the following objects were

detected. The YOLOv5 model detected the object
"knife" with a confidence of 88%, "gun" with 76%,
and "phone" with 53%.

𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖 = 3 – number of detected objects

𝐶𝐶𝐶𝐶1 = 0.88, 𝐶𝐶𝐶𝐶2 = 0.76, 𝐶𝐶𝐶𝐶3 = 0.53

𝐹𝐹𝐹𝐹(𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖) =
1
3

(0.88 + 0.76 + 0.53) =

=
2.17

3
= 0.7233

Thus, the fitness value of this individual is

0.723, which is a relatively good result. This
function quantitatively evaluates the quality of the
processed image based on the confidence values
obtained from the YOLOv5 model. It serves as the
basis for selecting individuals at the stages of
selection, crossover, and mutation in the genetic
algorithm, reflecting the effectiveness of
preprocessing, which influences detection accuracy.

Selection is one of the important stages of the
genetic algorithm. At this stage, individuals with the
best fitness scores are chosen to be transferred to the
next generation. In the project, tournament selection
is used as the selection method. According to this
method, several individuals are selected randomly,
and the one with the highest fitness function value is
chosen. Tournament selection is known for its
simplicity and stability, making it popular in
evolutionary problems [22]. This approach ensures
the preservation of diversity in the population and
prevents getting stuck in local minima.

After the selection phase, the genetic algorithm
moves to the crossover phase, as shown in Figure 3.
During the crossover stage, the parameters of the
selected parent individuals are mixed, resulting in
the formation of a new generation (offspring) of
individuals.

8

Development of a genetic algorithm for optimizing convolutional neural networks in order ...

Figure 5 – First individual and second individual.

As shown in Figure 5, a descendant (offspring)

is generated from two parent individuals using the
BLX-α (Blend Crossover) method. This method was
selected due to its effectiveness, and in this study,
the α coefficient is set to 0.5. Each parameter of the
new individual is calculated using the following
formula:

𝐶𝐶𝐶𝐶𝑘𝑘𝑘𝑘 = [𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚 − 𝛼𝛼𝛼𝛼 ∗ 𝑖𝑖𝑖𝑖] 𝑈𝑈𝑈𝑈 [𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 𝛼𝛼𝛼𝛼 ∗ 𝑖𝑖𝑖𝑖] (4)

where:

𝐶𝐶𝐶𝐶𝑘𝑘𝑘𝑘 − parameter of the offspring (child gene);
𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚 − the maximum and minimum

values of the corresponding parameter from the two
parent individuals;

𝛼𝛼𝛼𝛼 ∈ [0,1] − blending coefficient (set to 0.5 in
this study);

d = 𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚 the difference between parent
parameter values;

𝑈𝑈𝑈𝑈[. , .]

− 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑜𝑜𝑜𝑜𝑢𝑢𝑢𝑢 𝑑𝑑𝑑𝑑ℎ𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
 [𝑖𝑖𝑖𝑖, 𝑑𝑑𝑑𝑑][𝑖𝑖𝑖𝑖, 𝑑𝑑𝑑𝑑][𝑖𝑖𝑖𝑖, 𝑑𝑑𝑑𝑑].

Example:

𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 2.8 , 𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚 = 2.3 ,
𝛼𝛼𝛼𝛼 = 0.5 𝑖𝑖𝑖𝑖 = 2.8 − 2.3 = 0.5

𝐶𝐶𝐶𝐶1 = [2.3 − 0.5 ∗ 0.5] 𝑈𝑈𝑈𝑈 [2.8 + 0.5 ∗ 0.5] =
= [2.05] 𝑈𝑈𝑈𝑈 [3.05]

A value is randomly selected from this interval,

for instance: 𝐶𝐶𝐶𝐶1 = 2.64

Figure 6 – Result obtained using the BLX crossover method.

Figure 6 presents a graphical interpretation of

the BLX-α crossover method. This method extends
the boundaries of the search space, thereby
increasing the likelihood of the genetic algorithm
reaching globally optimal solutions. Moreover, the
BLX-α crossover reduces the risk of getting trapped
in local extrema and enables a more thorough
exploration of the solution space. These
characteristics make it an effective and reliable
approach for high-dimensional parameter
optimization problems, such as in image
preprocessin-g tasks [15].

Following the crossover stage, a mutation
operation is applied to some of the individuals'
parameters. This is a crucial mechanism for

maintaining diversity within the population and for
broadening the search space. The mutation process
is based on the normal (Gaussian) distribution and is
described by the following formula:

 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖′ = 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 + 𝑁𝑁𝑁𝑁(0,𝜎𝜎𝜎𝜎2) (5)

where:

𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖′ − the parameter value after mutation;
𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 − the original parameter value;
𝑁𝑁𝑁𝑁(0,𝜎𝜎𝜎𝜎2) − a normal distribution with zero

mean and variance 𝜎𝜎𝜎𝜎2 .
In this study, 𝜎𝜎𝜎𝜎 = 0.5 which corresponds to a

variance of 0.25. Thus, the random value is
sampled from the distribution N(0,0.25).

Figure 7 – Result after applying the mutation operator.

In this case, the mutation values are randomly

drawn from the distribution N(0,0.25) and added to
the original parameter values. This approach
promotes the exploration of new local extrema of the
fitness function and helps move closer to a globally
optimal solution. Figure 7 shows the results after
applying the mutation operation. It illustrates
graphically that even small deviations in parameters
allow for a deeper exploration of the solution space.

The DEAP (Distributed Evolutionary
Algorithms in Python) library provides a simple and
flexible framework for building genetic algorithms
in Python. It includes pre-built components for
population generation, fitness evaluation, selection,
crossover, and mutation [6]. To ensure accurate
object detection on low-light images using the
YOLOv5 model, the integration of this architecture
with a genetic algorithm demonstrated high
precision even under challenging conditions [1].

One of the main limitations of genetic
algorithms is the demand for substantial
computational resources. This is particularly true
during the fitness evaluation stage, as the YOLOv5
model must be applied to each individual,
significantly increasing computation time. To
address this issue, parallel computing methods were
employed in the study. Using the Python
multiprocessing module, the fitness function (2) was
executed in parallel across multiple CPU cores. This
approach allows for simultaneous evaluation of
several individuals and significantly reduces the
total computation time.

3. Results

This section presents the results of the

experimental study conducted within the framework
of the project. The experiments were based on
images acquired from an X-ray scanner under low-
light conditions, with the primary objective of
detecting objects inside luggage.

The dataset used for this study is the X-ray
Baggage Dataset, which contains 5,000 X-ray
images and was sourced from Kaggle, a publicly
available dataset repository. These images simulate

real-world security screening conditions, including
various concealed objects captured under low
illumination. The dataset was divided into 80% for
training and 20% for testing. All images were
resized to a uniform resolution of 640×640 pixels,
as required by the YOLOv5 model.

The dataset comprises 12 object classes, such as
knife, gun, scissors, phone, battery, and others. The
distribution of these classes is imbalanced, which
was addressed using class weighting and data
augmentation during training.

Experiments were conducted on a MacBook Pro
with an 8-core Apple M1 processor and 6 GB
unified memory, including 4 performance and 4
efficiency cores. Computations were executed using
the Apple M1 GPU accelerated by Metal
Performance Shaders (MPS). The software
environment included Python 3.10, PyTorch (MPS
backend), OpenCV, and Ultralytics YOLOv5.
CUDA acceleration was not used.

The research was structured into the following
stages: object detection on the original
(unprocessed) X-ray images using the YOLOv5
model, evaluation of preprocessing techniques,
measurement of YOLOv5 performance metrics
(mAP, Precision, Recall), parameter optimization
using genetic algorithms, and acceleration of the
computational process using the multiprocessing
module.

The study was organized into several key
phases: object detection on the raw image, analysis
of the impact of preprocessing techniques,
evaluation of YOLOv5 performance, parameter
optimization using genetic algorithms, and
efficiency analysis of parallel computing methods.

At the initial stage, images captured under low-
light conditions were fed into the YOLOv5 model
without any preprocessing. Due to insufficient
lighting, low contrast, and high noise levels, object
detection accuracy was significantly reduced. In this
case, the YOLOv5 model was only able to detect a
subset of the objects. According to the experimental
data, as shown in Figure 8, the average object
detection confidence score on the original images
was approximately 34%. This highlights the key

9

Mukhtar Zhassuzak et al.

Figure 7 – Result after applying the mutation operator.

In this case, the mutation values are randomly

drawn from the distribution N(0,0.25) and added to
the original parameter values. This approach
promotes the exploration of new local extrema of the
fitness function and helps move closer to a globally
optimal solution. Figure 7 shows the results after
applying the mutation operation. It illustrates
graphically that even small deviations in parameters
allow for a deeper exploration of the solution space.

The DEAP (Distributed Evolutionary
Algorithms in Python) library provides a simple and
flexible framework for building genetic algorithms
in Python. It includes pre-built components for
population generation, fitness evaluation, selection,
crossover, and mutation [6]. To ensure accurate
object detection on low-light images using the
YOLOv5 model, the integration of this architecture
with a genetic algorithm demonstrated high
precision even under challenging conditions [1].

One of the main limitations of genetic
algorithms is the demand for substantial
computational resources. This is particularly true
during the fitness evaluation stage, as the YOLOv5
model must be applied to each individual,
significantly increasing computation time. To
address this issue, parallel computing methods were
employed in the study. Using the Python
multiprocessing module, the fitness function (2) was
executed in parallel across multiple CPU cores. This
approach allows for simultaneous evaluation of
several individuals and significantly reduces the
total computation time.

3. Results

This section presents the results of the

experimental study conducted within the framework
of the project. The experiments were based on
images acquired from an X-ray scanner under low-
light conditions, with the primary objective of
detecting objects inside luggage.

The dataset used for this study is the X-ray
Baggage Dataset, which contains 5,000 X-ray
images and was sourced from Kaggle, a publicly
available dataset repository. These images simulate

real-world security screening conditions, including
various concealed objects captured under low
illumination. The dataset was divided into 80% for
training and 20% for testing. All images were
resized to a uniform resolution of 640×640 pixels,
as required by the YOLOv5 model.

The dataset comprises 12 object classes, such as
knife, gun, scissors, phone, battery, and others. The
distribution of these classes is imbalanced, which
was addressed using class weighting and data
augmentation during training.

Experiments were conducted on a MacBook Pro
with an 8-core Apple M1 processor and 6 GB
unified memory, including 4 performance and 4
efficiency cores. Computations were executed using
the Apple M1 GPU accelerated by Metal
Performance Shaders (MPS). The software
environment included Python 3.10, PyTorch (MPS
backend), OpenCV, and Ultralytics YOLOv5.
CUDA acceleration was not used.

The research was structured into the following
stages: object detection on the original
(unprocessed) X-ray images using the YOLOv5
model, evaluation of preprocessing techniques,
measurement of YOLOv5 performance metrics
(mAP, Precision, Recall), parameter optimization
using genetic algorithms, and acceleration of the
computational process using the multiprocessing
module.

The study was organized into several key
phases: object detection on the raw image, analysis
of the impact of preprocessing techniques,
evaluation of YOLOv5 performance, parameter
optimization using genetic algorithms, and
efficiency analysis of parallel computing methods.

At the initial stage, images captured under low-
light conditions were fed into the YOLOv5 model
without any preprocessing. Due to insufficient
lighting, low contrast, and high noise levels, object
detection accuracy was significantly reduced. In this
case, the YOLOv5 model was only able to detect a
subset of the objects. According to the experimental
data, as shown in Figure 8, the average object
detection confidence score on the original images
was approximately 34%. This highlights the key

10

Development of a genetic algorithm for optimizing convolutional neural networks in order ...

factors hindering the effective performance of
YOLOv5 under low-light conditions [1],[10].

The annotated results of object detection on
these images were used to visualize the exact object
locations in the original state and to demonstrate the

initial detection performance of the YOLOv5
model. These baseline results were subsequently
compared with the outcomes obtained after applying
the genetic algorithm and preprocessing
techniques.

Figure 8. Object detection by the YOLOv5 model
on the original image captured under low-light conditions.

Preprocessing methods are one of the crucial

stages in image quality enhancement. In this project,
techniques such as CLAHE, gamma correction,
histogram equalization, Gaussian blurring, bilateral
filtering, and methods like Retinex and MSRCR
were employed [23],[24]. These methods help
enhance local contrast, adjust lighting balance, and
efficiently filter out noise. As a result, the quality of
the data fed into the YOLOv5 model was

significantly improved, directly impacting the object
detection accuracy in low-light conditions. The
conducted experiments demonstrated that the
detection accuracy on preprocessed images was
significantly higher than in the original state. In
some cases, as shown in Figure 9, the YOLOv5
detection accuracy increased from 0% to 47%,
which greatly enhanced the overall system
performance.

Figure 9. Results of applying preprocessing methods.

As a result of the genetic algorithm
application, the preprocessing parameters are
automatically tuned, significantly improving the
object detection accuracy by the YOLOv5 model.
Figure 10 shows that at the 18th epoch, the
detection accuracy reached 58.25%, representing
a substantial improvement compared to the initial

results. In this case, the following methods with
parameters were used: CLAHE (1.05), Gamma
Correction (1.77), Histogram Equalization (1.41),
Gaussian Blur (6.98), Bilateral Filter (5.58), Non-
Local Means (9.54), Gray-World WB (0.80),
Max-RGB WB (0.35), Retinex (1.00), MSRCR
(1.73).

Figure 10. Best result of the 18th epoch achieved with the genetic algorithm and applied filters.

The genetic algorithm operated over 20 epochs,

with images saved at each stage showing the best
results. Each image displayed the detected objects,
accuracy metrics, and applied filters. This visual
comparison allows for the evaluation of the
optimization process's effectiveness, as shown in
Figure 11.

Object detection accuracy by the YOLOv5
model on the original image (left) and the image
processed using the genetic algorithm (right) is
shown in Figure 12. For the original image, the
model's average confidence level was 34.07%, and
after optimization, it increased to 82.81%. These
results clearly demonstrate the effectiveness of the
automatic filter parameter tuning and preprocessing,

as genetic algorithms select the most effective image
processing method, improving the quality of input
data for the YOLOv5 model and increasing object
detection accuracy.

In the project, genetic algorithms were
implemented using the DEAP library (Distributed
Evolutionary Algorithms in Python). This approach
enabled the automatic optimization of filter
parameters applied for image preprocessing [6].
During each epoch, the fitness values of individuals
in the population gradually increased. According to
the experimental results, as shown in Figure 13, the
fitness value of the best individual, calculated based
on the YOLOv5 model, reached a range of 85–87%
by the final stage.

11

Mukhtar Zhassuzak et al.

As a result of the genetic algorithm
application, the preprocessing parameters are
automatically tuned, significantly improving the
object detection accuracy by the YOLOv5 model.
Figure 10 shows that at the 18th epoch, the
detection accuracy reached 58.25%, representing
a substantial improvement compared to the initial

results. In this case, the following methods with
parameters were used: CLAHE (1.05), Gamma
Correction (1.77), Histogram Equalization (1.41),
Gaussian Blur (6.98), Bilateral Filter (5.58), Non-
Local Means (9.54), Gray-World WB (0.80),
Max-RGB WB (0.35), Retinex (1.00), MSRCR
(1.73).

Figure 10. Best result of the 18th epoch achieved with the genetic algorithm and applied filters.

The genetic algorithm operated over 20 epochs,

with images saved at each stage showing the best
results. Each image displayed the detected objects,
accuracy metrics, and applied filters. This visual
comparison allows for the evaluation of the
optimization process's effectiveness, as shown in
Figure 11.

Object detection accuracy by the YOLOv5
model on the original image (left) and the image
processed using the genetic algorithm (right) is
shown in Figure 12. For the original image, the
model's average confidence level was 34.07%, and
after optimization, it increased to 82.81%. These
results clearly demonstrate the effectiveness of the
automatic filter parameter tuning and preprocessing,

as genetic algorithms select the most effective image
processing method, improving the quality of input
data for the YOLOv5 model and increasing object
detection accuracy.

In the project, genetic algorithms were
implemented using the DEAP library (Distributed
Evolutionary Algorithms in Python). This approach
enabled the automatic optimization of filter
parameters applied for image preprocessing [6].
During each epoch, the fitness values of individuals
in the population gradually increased. According to
the experimental results, as shown in Figure 13, the
fitness value of the best individual, calculated based
on the YOLOv5 model, reached a range of 85–87%
by the final stage.

12

Development of a genetic algorithm for optimizing convolutional neural networks in order ...

Figure 11. Collage composed of the best results from each epoch.

Figure 12. Original and processed images, along with their accuracy.

Figure 13. Accuracy chart across epochs.

Due to the high computational load of the
genetic algorithm, parallel computing methods were
used in the project to reduce overall processing time.
By using the built-in Python module

multiprocessing, the fitness value of each individual
was calculated in parallel across multiple cores. This
method significantly reduces computation time,
especially when dealing with large populations.

Table 1. Comparison of accuracy and processing time on computers with 1 and 8 cores.

Population Size Accuracy (1 core) Time (1 core) Accuracy (8 cores) Time (8 cores)
30 81.21% 17 minutes 83.45% 5 minutes
50 86.55% 33 minutes 85.72% 9 minutes

100 87.71% 60 minutes 88.41% 16 minutes
200 83.92% 100 minutes 85.43% 30 minutes

Average 84.85% 52.5 minutes 85.75% 15 minutes

In the experiment, tests conducted on computers

with 1 and 8 cores using the same parameters
demonstrated that the use of 8-core parallel

computing reduces the execution time by 80-90%.
A more detailed comparison of the results is
presented in Table 1 and Figure 14.

Figure 14. The relationship between accuracy and time versus population size (1 and 8 cores)

These results demonstrate that the combination of

DEAP + YOLOv5 + Multiprocessing significantly
enhances the system's time efficiency and makes it
suitable for real-time object detection tasks. The
experimental data presented show that when detecting
objects in images captured under low-light conditions,
higher accuracy and more efficient time performance
are achieved compared to traditional methods [1], [2],
[3], [6]. The obtained results confirm the practical
applicability of the system for use in areas such as
security monitoring, video surveillance, medical
diagnostics, and autonomous control.

4. Conclusion

In conclusion, this study comprehensively

addressed the issue of improving object detection
accuracy on video data captured under low-light

conditions and demonstrated the effectiveness of the
integrated system. Modern preprocessing methods,
such as CLAHE, gamma correction, histogram
equalization, Gaussian blur, bilateral filter, as well
as Retinex and MSRCR methods [2], [3], were
applied to images obtained under low-light
conditions. These methods enhanced image
contrast, reduced noise, and significantly improved
overall quality, which allowed for substantial
improvements in the input data quality for the
YOLOv5 model. The integration of preprocessing
methods significantly improved YOLOv5's ability
to detect objects in low-light conditions.
Experimental data showed that the model's average
confidence level increased significantly, indicating
the practical applicability of the system for real-time
use in fields such as security monitoring, video
surveillance, and autonomous control [1].

13

Mukhtar Zhassuzak et al.

Due to the high computational load of the
genetic algorithm, parallel computing methods were
used in the project to reduce overall processing time.
By using the built-in Python module

multiprocessing, the fitness value of each individual
was calculated in parallel across multiple cores. This
method significantly reduces computation time,
especially when dealing with large populations.

Table 1. Comparison of accuracy and processing time on computers with 1 and 8 cores.

Population Size Accuracy (1 core) Time (1 core) Accuracy (8 cores) Time (8 cores)
30 81.21% 17 minutes 83.45% 5 minutes
50 86.55% 33 minutes 85.72% 9 minutes

100 87.71% 60 minutes 88.41% 16 minutes
200 83.92% 100 minutes 85.43% 30 minutes

Average 84.85% 52.5 minutes 85.75% 15 minutes

In the experiment, tests conducted on computers

with 1 and 8 cores using the same parameters
demonstrated that the use of 8-core parallel

computing reduces the execution time by 80-90%.
A more detailed comparison of the results is
presented in Table 1 and Figure 14.

Figure 14. The relationship between accuracy and time versus population size (1 and 8 cores)

These results demonstrate that the combination of

DEAP + YOLOv5 + Multiprocessing significantly
enhances the system's time efficiency and makes it
suitable for real-time object detection tasks. The
experimental data presented show that when detecting
objects in images captured under low-light conditions,
higher accuracy and more efficient time performance
are achieved compared to traditional methods [1], [2],
[3], [6]. The obtained results confirm the practical
applicability of the system for use in areas such as
security monitoring, video surveillance, medical
diagnostics, and autonomous control.

4. Conclusion

In conclusion, this study comprehensively

addressed the issue of improving object detection
accuracy on video data captured under low-light

conditions and demonstrated the effectiveness of the
integrated system. Modern preprocessing methods,
such as CLAHE, gamma correction, histogram
equalization, Gaussian blur, bilateral filter, as well
as Retinex and MSRCR methods [2], [3], were
applied to images obtained under low-light
conditions. These methods enhanced image
contrast, reduced noise, and significantly improved
overall quality, which allowed for substantial
improvements in the input data quality for the
YOLOv5 model. The integration of preprocessing
methods significantly improved YOLOv5's ability
to detect objects in low-light conditions.
Experimental data showed that the model's average
confidence level increased significantly, indicating
the practical applicability of the system for real-time
use in fields such as security monitoring, video
surveillance, and autonomous control [1].

14

Development of a genetic algorithm for optimizing convolutional neural networks in order ...

During the study, genetic algorithms,
implemented using the DEAP library, were used to
automatically optimize filter parameters. The fitness
values of the most effective individuals obtained
through the GA steadily improved in each
generation, which contributed to increased stability
and accuracy of YOLOv5’s results. Additionally,
the application of parallel computing via the Python
multiprocessing module allowed for a significant
reduction in experimental execution time–on
average, the time per epoch was reduced by
80–90%. This substantially improved the overall
system performance and its efficiency for real-time
use.

Thus, the proposed architecture, combining
DEAP, YOLOv5, and parallel computing methods,
has proven effective in improving object detection
accuracy in images captured under low-light
conditions and represents a promising solution for
practical applications in demanding fields.

Overall, the proposed integrated system,
combining the YOLOv5 model, preprocessing
methods, and genetic algorithms, allowed for
enhanced accuracy and reliability in detecting
objects in images obtained under low-light
conditions. This research demonstrated its practical
applicability and made a significant contribution to
the fields of security systems, monitoring, and

autonomous control [1], [2], [6], [3]. Further
research is recommended to deepen the study,
improve parameter optimization methods, integrate
additional object detection algorithms, and develop
parallel computing architectures.

Funding

This research was funded by the science

committee of the Ministry of Science and Higher
Education of the Republic of Kazakhstan grant
number AP19579370.

Author Contributions

Author Contributions: Conceptualization, M.Zh.

and Zh.B.; Methodology, M.Zh. and B.M.;
Software, F.N.; Validation, M.Zh., F.N., and Zh.B.;
Formal Analysis, M.Zh. and B.M.; Investigation,
F.N. and M.Zh.; Resources, Zh.B. and B.M.; Data
Curation, F.N.; Writing – Original Draft
Preparation, F.N.; Writing – Review & Editing,
M.Zh. and B.M.; Visualization, F.N.; Supervision,
Zh.B. and B.M.; Project Administration, M.Zh..

Conflicts of Interest

The authors declare no conflict of interest.

References

1. G. Jocher et al., “YOLOv5,” GitHub repository, 2020. [Online]. Available: https://github.com/ultralytics/yolov5
2. K. Zuiderveld, “Contrast Limited Adaptive Histogram Equalization (CLAHE),” in Graphics Gems IV, San Diego, CA, USA:

Academic Press, 1994, pp. 474–485, doi: 10.1016/B978-0-12-336156-1.50061-6.
3. Z. Rahman, D. J. Jobson, and G. A. Woodell, “Retinex processing for automatic image enhancement,” J. Electron. Imaging,

vol. 13, no. 1, pp. 100–110, Jan. 2004, doi: 10.1117/1.1636183.
4. S. M. Pizer et al., “Adaptive histogram equalization and its variations,” Comput. Vis. Graph. Image Process., vol. 39, no. 3,

pp. 355–368, Sep. 1987, doi: 10.1016/S0734-189X(87)80186-X.
5. R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed. Upper Saddle River, NJ, USA: Prentice Hall, 2008.

[Online]. Available: https://www.pearson.com/us/higher-education/program/Gonzalez-Digital-Image-Processing-3rd-
Edition/PGM241219.html

6. F.-A. Fortin, F.-M. De Rainville, M.-A. Gardner, M. Parizeau, and C. Gagné, “DEAP: Evolutionary Algorithms Made Easy,”
J. Mach. Learn. Res., vol. 13, pp. 2171–2175, Jul. 2012. [Online]. Available: https://jmlr.org/papers/v13/fortin12a.html

7. W. McKinney, Python for Data Analysis, 2nd ed. Sebastopol, CA, USA: O’Reilly Media, Inc., 2017. [Online]. Available:
https://www.oreilly.com/library/view/python-for-data/9781491957660/

8. A. Bochkovskiy, C. Y. Wang, and H. Y. M. Liao, “YOLOv4: Optimal Speed and Accuracy of Object Detection,” arXiv
preprint, arXiv:2004.10934, Apr. 2020.

9. J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement,” arXiv preprint, arXiv:1804.02767, Apr. 2018.
10. D. J. Jobson, Z. Rahman, and G. A. Woodell, “A multiscale retinex for bridging the gap between color images and the

human observation of scenes,” IEEE Trans. Image Process., vol. 6, no. 7, pp. 965–976, Jul. 1997, doi: 10.1109/83.597272.
11. J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc. ICNN’95 – Int. Conf. Neural Networks, Perth, WA,

Australia, 1995, pp. 1942–1948, doi: 10.1109/ICNN.1995.488968.
12. J. H. Holland, Adaptation in Natural and Artificial Systems. Cambridge, MA, USA: MIT Press, 1975. [Online]. Available:

https://mitpress.mit.edu/9780262581110/adaptation-in-natural-and-artificial-systems/
13. D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning. Boston, MA, USA: Addison-Wesley,

1989. [Online]. Available: https://dl.acm.org/doi/book/10.5555/534133

15

Mukhtar Zhassuzak et al.

14. M. Srinivas and L. M. Patnaik, “Genetic algorithms: A survey,” Computer, vol. 27, no. 6, pp. 17–26, Jun. 1994, doi:
10.1109/2.294849.

15. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE
Trans. Evol. Comput., vol. 6, no. 2, pp. 182–197, Apr. 2002, doi: 10.1109/4235.996017.

16. F. Chollet, Deep Learning with Python. Shelter Island, NY, USA: Manning Publ., 2017. [Online]. Available:
https://www.manning.com/books/deep-learning-with-python

17. A. Paszke et al., “PyTorch: An imperative style, high-performance deep learning library,” in Adv. Neural Inf. Process. Syst.,
vol. 32, pp. 8026–8037, 2019. [Online]. Available:
https://papers.neurips.cc/paper_files/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html

18. G. Bradski, “The OpenCV Library,” Dr. Dobb’s J. Softw. Tools, 2000. [Online]. Available: https://opencv.org/
19. S. Van der Walt, S. C. Colbert, and G. Varoquaux, “The NumPy array: A structure for efficient numerical computation,”

Comput. Sci. Eng., vol. 13, no. 2, pp. 22–30, Mar. 2011, doi: 10.1109/MCSE.2011.37.
20. C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” in Proc. 6th Int. Conf. Comput. Vision (ICCV),

Bombay, India, 1998, pp. 839–846, doi: 10.1109/ICCV.1998.710815.
21. E. H. Land and J. J. McCann, “Lightness and Retinex theory,” J. Opt. Soc. Am., vol. 61, no. 1, pp. 1–11, Jan. 1971.
22. A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing. Berlin, Heidelberg: Springer-Verlag, 2003. [Online].

Available: https://doi.org/10.1007/978-3-662-05094-1
23. J. Han, “Image Enhancement Method for Low-light Scenes Based on Retinex Theory and GAN,” IEEE Access, vol. 8, pp.

42318–42330, 2020, doi: 10.1109/ACCESS.2020.2977079.
24. W. Wang, X. Wu, X. Yuan, and Z. Gao, “A Retinex-Based Low-Light Image Enhancement Method with Noise

Suppression,” IEEE Trans. Image Process., vol. 30, pp. 6367–6380, 2021, doi: 10.1109/TIP.2021.3092735.

Information about authors
Mukhtar Zhassuzak is a PhD student and lecturer at the Department of Computer Science, al-Farabi Kazakh National

University (Almaty, Kazakhstan). His research interests include artificial intelligence and robotics. ORCID ID: 0000-0001-8164-
8199.

Farida Narkeshova is a fourth-year undergraduate student at the Department of Computer Science, al-Farabi Kazakh National
University (Almaty, Kazakhstan). Her academic focus includes computer science with a growing interest in artificial intelligence.
ORCID ID: 0009-0005-9347-5578

Zholdas Buribayev is a PhD holder and lecturer at the Department of Computer Science, al-Farabi Kazakh National University
(Almaty, Kazakhstan). His research is centered on artificial intelligence and robotics. ORCID ID: 0000-0002-3486-227X.

Bazargul Matkerim is a PhD in the Computer Science Department at Al-Farabi Kazakh National University (Almaty,
Kazakhstan, bazargul.matkerim@gmail.com). Her research interests include parallel computing and applications of machine
learning. ORCID ID: 0000-0002-5336-687X.

Submission received: 03 May, 2025.
Revised: 29 May, 2025.

Accepted: 30 May, 2025.

