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KAZAKH TRADITIONAL FOOD IMAGE  
CLASSIFICATION USING CNNS

Abstract. Obesity is becoming an increasingly serious global health issue with severe consequences. 
Effective nutrition management is crucial in combating this epidemic. In Kazakhstan, traditional foods 
are a central part of the culture, yet comprehensive data and tools for analyzing dietary habits are lack-
ing. Leveraging advances in computer vision, we developed a convolutional neural network (CNN) 
based approach to automatically classify images of traditional Kazakh dishes. We compiled a new da-
taset of 9,577 images across 22 categories of Kazakh foods and used it to train and evaluate several 
CNN models. The best-performing model (a fine-tuned DenseNet121) achieved a top-1 classification 
accuracy of 95%. These results highlight the potential of AI-based food recognition for dietary monitor-
ing, nutritional assessment, and cultural preservation. Furthermore, the trained model was deployed in a 
Telegram chatbot to enable real-time food identification through image uploads, demonstrating a practi-
cal application of the system.

Key words: Kazakh cuisine, food image classification, convolutional neural networks, transfer learn-
ing, computer vision, dietary monitoring.

1. Introduction

The saying “You are what you eat” reflects the 
strong connection between diet and overall health. 
In recent years, concerns about nutrition and obe-
sity have grown worldwide. According to the World 
Health Organization (WHO), 21% of children in 
Kazakhstan aged 6–9 are overweight or obese, link-
ing their diets high in calories, sugar, and fat to seri-
ous health issues such as heart disease and type 2 di-
abetes [1]. One way to maintain a healthy lifestyle is 
to monitor food intake, but manually logging meals 
and counting calories is time-consuming and prone 
to errors. Advances in computer vision (CV) offer a 
more efficient alternative–food recognition technol-
ogy that can automatically identify dishes from im-
ages. This technology has promising applications in 
dietary monitoring and nutritional assessment, res-
taurant automation, food quality control, and even 
assistance for visually impaired individuals [2]. 

A variety of food image datasets have been com-
piled to support CNN training, though most focus 

on Western and East Asian cuisines. (see Table 1). 
For example, Food-101 is a widely used dataset fea-
turing 101 Western food categories with 1,000 im-
ages each [3]. UECFOOD256 covers 256 Japanese 
dishes [4], and ChineseFoodNet includes 208 cat-
egories of Chinese cuisine [5]. Larger datasets like 
Food2K span 2,000 food classes worldwide (over 
1 million images) but remain private [6]. Similarly, 
FoodX-251 provides 251 international food catego-
ries (158,000 images) [7], and ISIA Food-500 ex-
pands to 500 classes (nearly 400,000 images) across 
diverse global cuisines [8]. A recent effort focusing 
on regional foods is the Central Asian Food Data-
set (CAFD) [9], which includes 42 classes of Cen-
tral Asian dishes. However, CAFD, while valuable, 
primarily covers a few popular Kazakh dishes (like 
beshbarmak and kazy) and lacks many traditional 
foods and regional variants crucial for a comprehen-
sive representation of Kazakh cuisine. In general, 
there is a clear gap in datasets and tools dedicated 
to Kazakh traditional foods, which are an important 
part of the country’s cultural heritage. 
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Table 1 – Summary of food classification datasets.

Dataset Name Year #Classes #Images Cuisine Focus
UECFOOD256 2014 256 31,000+ Japanese
ChineseFoodNet 2017 208 180,000+ Chinese

FoodX-251 2019 251 158,000+ International
ISIA Food-500 2020 500 399,726 International

Food2K 2021 2000 1,036,564 International
Food-101 2022 101 101,000 Western

CAFD 2022 42 16,499 Central Asian

To achieve high accuracy, most food classifi-
cation studies leverage transfer learning with mod-
ern CNN architectures pre-trained on large general 
image databases. Models such as VGG-16 [10], 
ResNet-50 [11], MobileNetV2 [12], EfficientNet 
[13], and DenseNet [14] have all been successfully 
fine-tuned for food image recognition. By start-
ing from models pre-trained on ImageNet [15], re-
searchers can exploit useful generic features (edges, 
textures, shapes) and then adapt them to the specific 
nuances of food imagery. This approach addresses 
the limited samples per class in many food datas-
ets and has consistently produced state-of-the-art 
results. For instance, an ensemble of fine-tuned 
CNN models (combining ResNet50, VGG19, Mo-
bileNetV2 and others) achieved over 96% accuracy 
on the Food-11 dataset by using transfer learning 
and model fusion [16]. With careful architecture 
selection and fine-tuning, even single CNN models 
now surpass 95% top-1 accuracy on challenging 
benchmarks like Food-101 [17]. Notably, research-
ers have demonstrated that multiple CNNs can be 
deployed together to improve robustness – for ex-
ample, a smartphone-based food recognition system 
combined several deep CNNs to attain high accu-
racy in real time [18]. These advances illustrate the 
effectiveness of deep CNNs and transfer learning 
for recognizing food items from images. Beyond 
standard CNN classifiers, recent work has explored 
techniques to better handle the fine-grained nature 
of food recognition. One strategy is to incorporate 
attention mechanisms or part-based feature learning 
to focus on the most discriminative regions of the 
food image. For example, Min et al. [8] employed a 
stacked global-local attention CNN to improve rec-
ognition on the ISIA Food-500 dataset, enabling the 
model to zoom in on subtle details (like specific gar-
nishes or textures) that distinguish similar dishes. 
Feng et al. [19] proposed a fine-grained recognition 

method for Chinese cuisine that explicitly identifies 
important parts of the dish (such as certain ingredi-
ents or shapes), which boosted classification perfor-
mance on visually similar food categories. Another 
emerging direction is the integration of vision trans-
formers (ViTs) with CNNs to capture long-range 
dependencies in food images. By combining a CNN 
backbone for local feature extraction with trans-
former-based global context modeling, hybrid mod-
els have achieved further accuracy improvements 
on diverse food datasets [20]. These advanced ar-
chitectures help address cases where purely local 
features are insufficient – for instance, distinguish-
ing two soups might require attention to the over-
all arrangement of ingredients, which transformers 
can provide. Overall, the introduction of attention 
and transformer modules has enhanced CNN-based 
food classifiers, enabling them to better handle the 
inherent fine-grained complexity of food images.

Despite the progress in food image classifica-
tion, prior research has largely overlooked Kazakh 
traditional cuisine. To bridge this gap, we present 
the first large-scale image dataset devoted to tradi-
tional Kazakh cuisine and use it to develop a robust 
food classification model. The new Kazakh Food 
Dataset contains 9,577 images spanning 22 distinct 
dish categories, encompassing a broad variety of 
local foods from meats and soups to dairy prod-
ucts and breads. Using this dataset, we trained and 
fine-tuned several state-of-the-art CNN architec-
tures (ResNet50, EfficientNet-B0, VGG16, Mobile-
NetV2, and DenseNet121) via transfer learning to 
determine the most effective model for recognizing 
Kazakh dishes. The goal of this research is not only 
to achieve high classification accuracy but also to 
demonstrate real-world utility. To that end, we in-
tegrated our best model into a Telegram messaging 
bot, allowing users to classify dishes by simply up-
loading a photo. This makes the technology acces-
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sible and practical for everyday use, aiding dietary 
tracking and showcasing AI for cultural preserva-
tion. 

In summary, the contributions of this work in-
clude:

- New Dataset: We compiled a novel dataset of 
Kazakh traditional food images (9,577 images, 22 
categories), addressing an underrepresented domain 
in food recognition research.

- Model Evaluation: We applied and compared 
five modern CNN models for food image classifi-
cation, achieving up to 95% accuracy with the best 
model (DenseNet121). We also analyzed the mod-
els’ performance to understand the impact of archi-
tecture on this task.

- Practical Deployment: We deployed the top-
performing model as a Telegram bot for real-time 
food image classification, illustrating the practical 
feasibility of our approach for end-users.

2. Materials and Methods

The primary objective of this study was to de-
velop an accurate and reliable model for classifying 
images of traditional Kazakh foods. Figure 1 pro-
vides an overview of the methodological pipeline, 
from dataset creation to model training and deploy-
ment. The following subsections detail the dataset, 
preprocessing steps, CNN architectures, training 
procedure, and evaluation metrics.

Figure 1 – (A) Collection of Kazakh food images. (B) Pre-processing images to normalize input dimensions,  
enhance feature extraction, and minimize overfitting. (C) Incorporation of pretrained convolutional neural networks  

with customized classifier layers. (D) Initial training, followed by fine-tuning to optimize model performance.

2.1. Dataset Collection
We created a dataset specifically to capture 

the diversity of traditional Kazakh cuisine. Images 
were sourced from public domains, including search 
engines (e.g., Google, Yandex) and social media 
platforms where people share photographs of local 
dishes (Figure 2). To increase intra-class variabil-
ity in lighting, angle, and background conditions, 
additional frames were extracted from public You-
Tube cooking videos featuring traditional Kazakh 
dishes. This approach allowed us to partially simu-
late real-world conditions and reduce dataset bias. 
However, no photographs were taken directly un-
der field conditions by the authors, which remains a 
limitation for further expansion. To ensure quality, 
an initial manual filtering removed duplicates, very 
low-resolution images, and irrelevant content (such 
as non-food items or incorrect labels). The resulting 

dataset comprises 9,577 images categorized into 22 
distinct Kazakh food classes. These classes include 
well-known dishes like beshbarmaq (boiled meat 
with noodles) and plov (rice pilaf), as well as less 
internationally known items such as baursak (fried 
bread), qazy-qarta (horsemeat sausage and cured 
fat), samsa (meat pastry), sorpa (meat broth soup), 
qurt (dried cheese curds), and many others. The 
number of images per class ranges from 96 to 920 
(Figure 3), reflecting some natural frequency im-
balance in available data. To enable unbiased mod-
el evaluation, we partitioned the dataset into train-
ing (70% of images), validation (15%), and test 
(15%) subsets. The split was stratified by class so 
that all classes are represented in each subset. This 
balanced split ensures that model performance is 
assessed on food images it has never seen during 
training. 
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Figure 2 – Sample images from the Kazakh Traditional Food Dataset.

Figure 3 – Image distribution across Kazakh food categories.
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2.2. Image Preprocessing and Augmentation
Prior to training the CNN models, we applied 

a series of preprocessing and augmentation steps to 
standardize the data and improve generalization:

Resizing: Each image was resized to 224×224 
pixels, matching the input dimension requirements 
of the CNN architectures used. This uniform size 
ensures compatibility with models like ResNet50, 
VGG16, etc., which typically expect 224×224 RGB 
inputs.

Normalization: We normalized pixel intensities 
based on the mean and standard deviation of the Im-
ageNet dataset (on which our CNN backbones were 
pre-trained). This scaling (subtracting mean and 
dividing by std for each color channel) brings the 
image data into a range suitable for the pre-trained 
models and stabilizes training.

Data Augmentation: To increase effective da-
taset size and help the model become invariant to 
various transformations, we applied random aug-
mentations during training. These included ran-
dom rotations (up to ~15 degrees), horizontal flips, 
adjustments to brightness and contrast, and slight 
translations or zooms. Augmentation introduces 
variability, reducing the chance of overfitting and 
improving the model’s ability to handle real-world 
image variation (different angles, lighting, back-
grounds, etc.).

Class Imbalance Mitigation: For underrepre-
sented classes (those with relatively fewer images), 
we employed targeted augmentation. Specifically, 
images from these minority classes were augmented 
more heavily or more frequently to synthetically 
boost their presence during training. This strategy 
helps the model not to be biased in favor of classes 
with many examples. By augmenting ásip (a type of 
sausage) or shelpek (flatbread), for instance, which 
had fewer original samples, we help the model learn 
those classes nearly as well as classes like beshbar-
maq which had abundant examples. 

2.3. CNN Architectures and Transfer Learning
Deep convolutional neural networks (CNNs) 

have achieved state-of-the-art results in image rec-
ognition tasks and are well-suited for food classifi-
cation [2]. In this work, we leveraged transfer learn-
ing: instead of training from scratch, we fine-tuned 
models pre-trained on the large ImageNet dataset 
[15] for our specific food classification task. Trans-
fer learning capitalizes on the generic visual fea-
tures (edges, textures, shapes) learned from millions 
of generic images and adapts them to our domain 
(Kazakh food images), which is particularly effec-
tive given our dataset’s moderate size. We selected 

five well-known CNN architectures, chosen to pro-
vide a mix of depth, parameter size, and design phi-
losophies:

ResNet50 [11] – a 50-layer deep residual net-
work. ResNet introduced skip connections (residual 
links) that help propagate gradients and mitigate the 
vanishing gradient problem in very deep networks 
[11]. ResNet50 is capable of extracting rich features 
through its many layers, yet trains effectively due to 
these identity connections.

EfficientNet-B0 [13] – a model from the Effi-
cientNet family that optimizes accuracy per param-
eter by balancing network depth, width, and resolu-
tion [13]. EfficientNet-B0 is a relatively lightweight 
model (~5.3M parameters) but achieves high accu-
racy by a compound-scaling strategy, making it an 
excellent choice when computational efficiency is a 
concern.

VGG16 [10] – a classic 16-layer CNN known 
for its simple sequential architecture of convolu-
tional layers with small 3×3 filters [10]. VGG16 
has a large number of parameters (~138M) and was 
among the first very deep networks to show out-
standing performance on ImageNet. Its hierarchi-
cal feature learning is effective, though the lack of 
residual connections and high parameter count can 
make training and fine-tuning slower or prone to 
overfitting.

MobileNetV2 [12] – a convolutional network 
architecture designed for mobile and embedded de-
vices. MobileNetV2 uses inverted residual blocks 
and depthwise separable convolutions to drasti-
cally reduce computation and model size, while still 
achieving competitive accuracy [12]. It has around 
3.4M parameters, making it the smallest of the mod-
els we tested. This model provides insight into how 
a lightweight architecture performs on our task.

DenseNet121 [14] – a 121-layer densely con-
nected network. DenseNet connects each layer to 
every subsequent layer (feature maps are cumula-
tively reused), leading to strong feature propagation 
and efficiency [14]. With roughly 8 million param-
eters, DenseNet121 encourages feature reuse and 
mitigates vanishing gradients even with great depth. 
This architecture often yields very robust perfor-
mance on limited datasets due to its feature reuse 
strategy.

Each model above was initialized with weights 
pre-trained on ImageNet’s 1,000-class object rec-
ognition task [15]. We replaced each model’s fi-
nal fully connected classification layer with a new 
dense layer (with softmax activation) matching our 
22 food categories. This customization allows the 
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network to output class probabilities for the Kazakh 
food classes. Initially, all convolutional layers re-
tained the pre-trained weights (which capture gen-
eral image features), and only the new final layer’s 
weights were randomized for training. 

2.4. Training Procedure
We trained all models using a two-stage transfer 

learning approach to gradually adapt the pre-trained 
networks to our specific dataset:

1) Initial Training (Feature Extraction Stage): In 
this phase, we froze all convolutional layers of the 
CNN (i.e., kept the pre-trained weights fixed) and 
trained only the newly added classifier layer (and 
optionally a few preceding fully connected layers, 
if present). This strategy limits the number of pa-
rameters being updated, preventing significant loss 
of learned features and requiring fewer training 
samples to converge. We used the Adam optimizer 
with a learning rate of 0.001 for fast convergence. A 
batch size of 32 was chosen, and training ran for 15 
epochs in this stage. We employed the categorical 
cross-entropy loss function, appropriate for multi-
class classification with softmax output. During this 
phase, the model learns to map the high-level fea-
tures (extracted by the pre-trained base) to our spe-
cific classes. Early epochs saw rapid improvement 
in accuracy as the new layer adjusted to the task. 
We monitored performance on the validation set af-
ter each epoch, and used early stopping if validation 
accuracy plateaued to avoid overfitting.

2) Fine-Tuning (Full Network Training Stage): 
After the initial phase, the model’s new classifier 
was reasonably well-trained while the convolutional 
base remained at its ImageNet-tuned state. In the 
fine-tuning stage, we unfroze some of the top convo-
lutional layers of the network (typically the last few 
layers in the CNN backbone) and continued training 
at a much lower learning rate (we used 1×10^–5). 
Fine-tuning allows the model to adjust the more 
specific feature representations in deeper layers to 
better fit the nuances of Kazakh food imagery. We 
ran this stage for an additional 10 epochs, which 
was sufficient for the validation accuracy to stabi-
lize. During fine-tuning, a small learning rate was 
crucial to avoid degrading previously learned fea-
tures; it allowed for subtle adjustments. We found 
that fine-tuning improved performance primarily 
by increasing recall for classes that the feature ex-
tractor stage struggled with, thereby balancing the 
model across all categories.

All training was performed on a workstation 
with an NVIDIA GTX-series GPU. On average, 
each model’s initial training stage took a couple of 

hours, and fine-tuning took roughly one hour, al-
though EfficientNet-B0 and MobileNetV2 (being 
smaller) trained faster than VGG16 and ResNet50. 
We saved the model with the highest validation ac-
curacy for final evaluation on the test set. 

Training Hyperparameters. The models were 
trained using the following settings:

- Initial learning rate: 0.001 (feature extraction 
stage), reduced to 1×10⁻⁵ during fine-tuning.

- Optimizer: Adam with default parameters (β₁ 
= 0.9, β₂ = 0.999, ε = 1e−8).

- Loss function: Cross-entropy loss.
- Batch size: 32.
- Number of epochs: 15 for initial training, 10 

for fine-tuning.
- Scheduler: StepLR with step size of 5 epochs 

and γ = 0.1 during fine-tuning.
- Weight decay: Not applied.
2.5. Evaluation Metrics
We evaluated model performance on the unseen 

test set using several standard classification metrics. 
The primary metric is accuracy, defined as the pro-
portion of correctly classified images among all test 
images. If TP, TN, FP, and FN denote the counts 
of true positives, true negatives, false positives, and 
false negatives respectively, the accuracy is given 
by:

𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑇𝑇  

 

(1)

While accuracy gives an overall measure, it can 
be misleading if the test set is imbalanced among 
classes. Thus, we also compute precision and recall 
for each class, as well as their harmonic mean, the 
F1-score. For a given class (dish type) treated as the 
“positive” class, we have:

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑃𝑃
𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃  

 

(2)

which measures how many of the images that the 
model labeled as this class were actually that class. 
High precision means few false alarms (mislabeling 
other dishes as this one).

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹  

 

(3)

which measures how many of the images of this 
class were correctly identified. High recall means 
the model misses very few images of that class.
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The F1-score for a class is:

𝐹𝐹1 = 2 × �Precision × Recall�
�𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅� ∙  

 

(4)

We report macro-averaged precision, recall, and 
F1, which are averages of these metrics across all 
22 classes (giving each class equal weight). The 
macro metrics are informative in our case because 
they indicate how well the model performs on each 
dish category independently of class frequency. A 
high macro-F1 implies the model is consistently ac-
curate across all dish types, not just the most com-
mon ones. We present the accuracy and macro met-
rics for each model, and also examine class-specific 
performance to identify which dishes are easiest or 
hardest to recognize.

3. Results

After training and fine-tuning the five CNN 
models, we evaluated each on the test set of Ka-
zakh food images. Table 2 summarizes the perfor-
mance of each model in terms of overall accuracy 
and macro-averaged precision, recall, and F1-score. 
All models achieved high accuracy above 89%, in-
dicating that transfer learning on our dataset is ef-
fective. Among the architectures, DenseNet121 
emerged as the top performer with 95% accuracy, 
slightly outperforming EfficientNet-B0 (94% accu-
racy) and clearly outperforming ResNet50, Mobile-
NetV2, and VGG16. The DenseNet121 model also 
achieved the highest macro precision (95%) and F1-

score (95%), reflecting its strong and balanced per-
formance across all dish categories. EfficientNet-B0 
was a close second in most metrics, with a macro F1 
of 93%. MobileNetV2 and ResNet50 reached about 
91–92% accuracy and F1, while VGG16 trailed at 
89% accuracy and a macro F1 of 88%.

As shown in Table 2, DenseNet121 achieved 
the highest accuracy on our dataset. Notably, af-
ter fine-tuning (FT), DenseNet121’s macro recall 
improved from 94% to 95%, indicating that fine-
tuning helped it correctly capture a few additional 
instances of certain foods that were initially mis-
classified. The improvement in F1-score to 95% 
suggests a more balanced precision-recall trade-off 
after fine-tuning. In comparison, EfficientNet-B0 
also performed very well, likely due to its excellent 
pre-training and efficient use of parameters, ending 
up only slightly behind DenseNet121 on all met-
rics. ResNet50 and MobileNetV2 had respectable 
accuracy (over 90%); ResNet50 benefited from 
its depth, while MobileNetV2’s lightweight de-
sign somewhat limited its ultimate accuracy but it 
still generalized well (its precision and recall both 
92%). VGG16 had the lowest performance, which 
can be attributed to its very large number of pa-
rameters and lack of modern architectural features 
(no residual or dense connections). VGG16 tended 
to overfit slightly on the training data even with 
augmentation, and its macro recall (87%) was the 
lowest, indicating it struggled with some classes 
more than the others.

To visualize the training process, Figure 4 shows 
the learning curves of the DenseNet121 model. 

Table 2 – Performance of different CNN models on the Kazakh Traditional Food test set. The DenseNet121 (Fine-tuned) model 
corresponds to the DenseNet after the second-stage training. All values are percentages (%).

Model Accuracy Macro 
Precision

Macro 
Recall

Macro F1-
score

Notes

ResNet50 91% 92% 91% 91% -

EfficientNet-B0 94% 94% 93% 93% -

VGG16 89% 90% 87% 88% -

MobileNet_v2 92% 92% 92% 92% -

DenseNet121 95% 95% 94% 94% Original version

DenseNet121 (FT) 95% 95% 95% 95% Fine-tuned version
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Figure 4 – Training and validation accuracy curves for the DenseNet121 model over 25 epochs. 
The model converges to about 95% validation accuracy. Training accuracy (orange curve) increases steadily 

and slightly surpasses validation accuracy (red curve), indicating mild overfitting by the end of training. 
Fine-tuning was applied in the later epochs (after epoch 15) with a lower learning rate, 

resulting in a small bump in validation accuracy.

The training accuracy (orange line) and valida-
tion accuracy (red line) improve rapidly in the first 
few epochs and start to plateau around 90%–93% 
accuracy after ~10 epochs. The initial feature-ex-
traction stage (first 15 epochs) brought the model 
to a high validation accuracy in the low 90s. Af-
ter epoch 15, we unfroze layers and fine-tuned the 
model; a slight uptick in validation accuracy can be 
observed, reaching 95% by epoch 25. The final gap 
between training and validation accuracy is small 
(training around 99%, validation 95%), which sug-
gests the model did not significantly overfit and gen-
eralizes well to unseen data.

In addition to aggregate metrics, we exam-
ined class-wise performance to understand which 
dishes were most easily recognized and which 
were occasionally confused. Overall, the fine-
tuned DenseNet121 achieved very high precision 
and recall on most classes. For 15 out of 22 dish 
categories, the model’s precision and recall were 
above 90%. Several popular dishes with sufficient 
training samples, such as beshbarmaq (boiled meat 
with noodles) and plov (rice pilaf), were classified 
extremely well – in fact, plov achieved a 100% 
recall, meaning every test image of plov was cor-
rectly identified. The model also attained perfect 
precision (no false positives) on certain distinctive 
categories like sheep_head (boiled sheep’s head, a 
unique appearance) and plain_soup (simple broth), 
which suggests it did not mistake other foods as 
those items.

However, a few classes proved challenging. For 
example, the dish ásip (a type of sausage made from 
intestines) had a recall of only 76%, indicating the 
model missed about 24% of ásip images. Most of 
those missed ásip images were predicted as qazy-qa-
rta, another dish made of horsemeat sausage and or-
gan meats. This confusion is understandable because 
ásip and qazy-qarta are visually similar (both are 
ring-shaped boiled sausage-like meats). Indeed, qa-
zy-qarta also showed slightly lower precision (83%), 
meaning some predictions of qazy were actually ásip. 
Another example was shelpek (a flat fried bread), 
which had a recall of ~81% – it was sometimes mis-
taken for baursak (a small fried dough bread) since 
both are fried dough products with a golden color. 
These cases underline that visually similar traditional 
foods can challenge the model, especially if those 
classes have fewer training samples. Despite these 
difficulties, the model still managed F1-scores in the 
mid-80s for these tough pairs, which is acceptable. 
Meanwhile, classes that have very distinct visual fea-
tures or sufficient training data – such as samsa (trian-
gular meat pastry), manty (steamed dumplings), qurt 
(white dried cheese balls), and qymyz (milky bever-
age) – all exceeded 95% in precision and recall.

Figure 5 illustrates the confusion matrix for 
DenseNet121, highlighting the distribution of clas-
sification errors. The majority of misclassifications 
occurred between visually similar dishes, reinforc-
ing the importance of high-quality image represen-
tation in the dataset.
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Figure 5 – DenseNet121 confusion matrix

We investigated the reasons behind certain 
misclassifications by applying Grad-CAM (Gradi-
ent-weighted Class Activation Mapping) to visu-
alize which image regions influenced the model’s 
decisions. Figure 6 presents a case where ásip was 
incorrectly predicted as qazy-qarta. As illustrated, 
the model’s attention is spread across the circular 
meat textures, which are shared by both dishes, 
suggesting that the CNN has difficulty distinguish-
ing the subtle visual cues between them. However, 
despite this visual similarity, the dishes are notably 
different: ásip typically has a darker, more uniform 
texture and is often served in slices with smoother 

surfaces, while qazy-qarta tends to have visible 
marbling, lighter fat edges, and a more segmented 
internal structure. These distinctions are subtle but 
significant, and their consistent capture could be 
improved through additional annotated samples, 
part-based modeling, or the use of attention-guided 
refinement.

These interpretability tools enhance our under-
standing of the model’s behavior and can inform 
further improvements, such as incorporating atten-
tion mechanisms or fine-grained part localization 
to reduce confusion between visually similar food 
items.
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Figure 6 – Grad-CAM visualization of a misclassified ásip image, predicted as qazy-qarta.

In summary, the DenseNet121 model (after 
fine-tuning) provided excellent and robust clas-
sification performance across the diverse range of 
Kazakh food items. The high macro-average scores 
in Table 2 confirm that our approach achieved both 
high overall accuracy and balanced class-wise accu-
racy. This result is significant: it demonstrates that 
even less represented or visually confusable dishes 
can be recognized with high reliability by a tailored 
CNN with appropriate training techniques.

4. Discussion

The experimental results show that deep CNN 
models can effectively learn to distinguish a variety 
of traditional Kazakh foods from images. Among 
the models tested, DenseNet121 performed the best, 
which we attribute to several factors. DenseNet’s 
densely connected layers encourage feature reuse 
and efficient gradient flow [14], allowing the model 
to leverage features learned in earlier layers for lat-
er layers’ decisions. This is particularly beneficial 
for our task, where many food classes share visual 
characteristics (e.g., similar ingredients or cook-
ing styles) – DenseNet can combine low-level and 
high-level features to differentiate fine details. Ad-
ditionally, DenseNet121 has a moderate number of 
parameters (≈8M) which seems to hit a sweet spot 
for our dataset size; it’s complex enough to model 
the data well but not so large as to severely overfit. 

EfficientNet-B0 also achieved very high accu-
racy (94%), coming in a close second. Efficient-

Net’s compound scaling approach produces a well-
balanced network that, despite being much smaller 
than DenseNet121, could capture most essential 
features of the dishes [13]. The slightly lower per-
formance of EfficientNet-B0 might be due to its 
reduced capacity; some very subtle differences be-
tween certain dishes could require the richer fea-
tures or greater depth that DenseNet121 provides. 
It is worth noting that with larger EfficientNet 
variants (B1, B4, etc.), accuracy might further im-
prove, though at the cost of more computational 
demand.

ResNet50 and MobileNetV2 offered an inter-
esting comparison: ResNet50 (91% accuracy) has 
far more parameters and depth than MobileNetV2 
(92% accuracy), yet their results were similar. 
ResNet’s residual connections [11] helped it learn 
deep features, but perhaps many layers were not 
fully utilized for our dataset’s level of complexity, 
leading to performance slightly below Efficient-
Net and DenseNet. MobileNetV2 [12], despite its 
lightweight design, held its own with 92% accura-
cy, which underscores the effectiveness of transfer 
learning even for small models. MobileNetV2’s use 
of inverted residuals and depthwise convolutions 
allows it to generalize well from the pre-trained 
weights with minimal fine-tuning. Its success indi-
cates that for deployment on mobile devices (where 
model size and speed are crucial), MobileNetV2 
could be a viable candidate, sacrificing only a few 
percentage points of accuracy compared to the best 
model. 
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VGG16 had the lowest accuracy (89%) and 
F1 (88%) in our tests. This model’s architecture, 
while historically important [10], lacks the mod-
ern enhancements of the other networks. VGG16’s 
very large parameter count (over 10× more than 
DenseNet121) likely required more data to avoid 
overfitting than we could provide, even with aug-
mentation. We observed that VGG16 started to 
memorize some training images (training accuracy 
continued improving while validation stagnated), 
indicating overfitting. Regularization techniques 
and further fine-tuning did not close the gap en-
tirely. Moreover, VGG16 doesn’t have built-in 
mechanisms like residual or dense connections to 
preserve gradients in extremely deep stacks of lay-
ers, which might make it harder to fine-tune on a 
specific task. This explains its lower recall on some 
classes – it missed more of the subtle distinctions. In 
contrast, the more advanced architectures (ResNet, 
DenseNet, EfficientNet) incorporate design choic-
es that make them both deeper and easier to train, 
which directly translated into better performance on 
our task.

In order to evaluate the true effectiveness of the 
chosen CNN architectures, it is important to con-
sider how they perform in comparison to simpler 
baseline models. In traditional image classification 
workflows, a baseline might consist of a shallow 
convolutional neural network (e.g., two or three 
convolutional layers followed by pooling and dense 
layers) or a classic machine learning pipeline such 
as Histogram of Oriented Gradients (HOG) features 
combined with a Support Vector Machine (SVM). 
These baseline models are computationally light-
weight and easy to implement but often struggle 
with fine-grained visual distinctions, especially in 
domains like food where many classes have over-
lapping textures and colors.

Although we did not implement such baselines in 
this study due to the focus on modern transfer learn-
ing techniques, prior literature suggests that their clas-
sification accuracy typically ranges between 65–80% 
on comparable datasets. In contrast, all of our CNN 
models achieved over 89% accuracy, with the fine-
tuned DenseNet121 reaching 95%. This large margin 
highlights the clear advantage of using pre-trained 
deep CNN architectures for food classification tasks. 
Including baselines in future work could be helpful 
for completeness, but the current results already dem-
onstrate significant improvements over what simpler 
models can typically offer.

Another key finding is the importance of fine-
tuning and data augmentation for achieving high 

and balanced performance. In the initial training 
stage (with frozen convolutional layers), the mod-
els already reached ~90% accuracy, showing that 
generic features from ImageNet were quite ap-
plicable to food images. However, some classes 
remained confusable at that point. By fine-tuning 
(unfreezing layers), the models were able to adjust 
deeper filter weights to the specific color, texture, 
and shape cues of Kazakh dishes (for instance, 
learning the specific texture of qazy vs ásip or the 
unique shape of a baursak vs a shelpek). This re-
duced the error rate on those confusing pairs, as 
evidenced by the improved recall for ásip and qa-
zy-qarta when comparing the fine-tuned DenseNet 
to its initial state. The data augmentation was in-
strumental in this process: classes like ásip and 
shelpek that initially had lower recall were aug-
mented more, effectively giving the model addi-
tional “experience” on those classes. The fact that 
our macro recall reached 95% (equal to accuracy) 
for DenseNet121 indicates that our training strate-
gy succeeded in making the model perform equally 
well across both frequent and infrequent classes. 
In other words, the model is not biased toward the 
most common foods, which is crucial for a practi-
cal application where any of the 22 dishes might be 
encountered.

Despite the strong performance, there are some 
limitations and avenues for improvement. First, 
while our dataset is large and diverse for Kazakh 
foods, it may not cover every regional variety or 
rare traditional dish. In practice, a user might take a 
photo of a dish that is not in our 22 classes (for ex-
ample, a regional dessert or a variation of a known 
dish). The current model would inevitably misclas-
sify such an out-of-scope input as one of the known 
classes. Addressing this could involve expanding 
the dataset to include more classes or implementing 
an out-of-distribution detection mechanism (so the 
model can say “unknown dish” when appropriate). 
Second, certain visually similar dishes (like those 
sausage products or fried breads) still pose a chal-
lenge. Incorporating more fine-grained features or 
using techniques like attention mechanisms might 
help the model focus on subtle differences (for in-
stance, an attention module could learn to focus on 
the cross-section texture of sausage slices to differ-
entiate horsemeat vs. intestines). Additionally, an 
ensemble of multiple models could be considered 
to improve reliability – for example, combining 
DenseNet and EfficientNet predictions might yield 
a slight boost and reduce any single model’s blind 
spots. 
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In a real-world setting, consistent performance 
also depends on handling varying conditions in pho-
tos. Our training data, while varied, mostly contains 
images from the web where dishes are relatively 
well-presented. If users take photos in dim lighting 
or at unusual angles, performance might drop. In fu-
ture work, we plan to enrich the dataset with more 
user-contributed photos (through the Telegram bot 
itself, we could collect challenging examples) and 
possibly apply image enhancement or normalization 
techniques to handle such cases. 

One important aspect of this work is demon-
strating how AI can be applied for cultural heritage 
and practical tools. We addressed this by integrating 
the fine-tuned DenseNet121 model into a Telegram 
chatbot, allowing users to classify dishes in real 
time simply by sending food images (Figure 7). 

The bot was implemented using the python-
telegram-bot library and executed in a Google Co-
lab environment. Inference is performed directly in 
Python using onnxruntime, based on a fine-tuned 
ONNX model. When a user uploads a photo of 
food, the image is preprocessed, passed through 
the model, and classified within approximately 1.2 
seconds. The bot currently supports 22 predefined 
Kazakh food categories and does not yet detect un-
known or out-of-distribution inputs. Preliminary 
user testing confirmed that the bot provides fast 
and accurate predictions under normal conditions. 
This kind of application could be expanded into a 
full mobile app or integrated into dietary tracking 
software. It also has educational value: for instance, 
tourists or young people can learn about traditional 
foods by simply taking a photo to get the name and 
description of the dish. The success of the model 
in recognizing even intricately prepared traditional 
dishes underscores the capability of modern CNNs 
to handle fine-grained image classification tasks that 
were once considered very difficult. 

In comparison to previous studies or datasets, 
our work is one of the first to focus specifically on 
Kazakh cuisine. The high accuracy (95%) achieved 
is on par with, or even exceeds, results reported on 
more extensively studied food datasets of similar 
scale. For example, authors of the Central Asian 
Food Dataset (CAFD) reported lower recogni-
tion rates on certain Kazakh dishes due to limited 
samples [9]. By concentrating on Kazakhstan and 
curating a more detailed dataset, we were able to 
push the performance higher. This suggests a gen-
eral insight: for underrepresented food domains (or 

any specialized image domain), creating a dedi-
cated dataset and leveraging transfer learning can 
yield very strong results without needing millions 
of images.

Figure 7 – Example usage of the developed Telegram  
chatbot demonstrating real-time identification of Kazakh  

traditional dishes. The chatbot accurately recognizes 
 images of dishes, such as beshbarmaq (top) and  

plov (bottom), directly uploaded by users.
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5. Conclusions

In this study, we introduced a comprehensive 
machine learning approach for classifying tradition-
al Kazakh foods from images using convolutional 
neural networks. We constructed the first large-scale 
image dataset of Kazakh cuisine (9,577 images, 22 
categories) and demonstrated that deep CNN mod-
els, when properly fine-tuned, can achieve high ac-
curacy (up to 95%) on this challenging fine-grained 
classification task. Among the models evaluated, 
DenseNet121 proved most effective, likely due to 
its feature reuse and balanced complexity, enabling 
it to distinguish even visually similar dishes with 
high reliability. Our results underscore the effec-
tiveness of transfer learning and data augmentation 
in adapting general vision models to specific cul-
tural domains. 

Beyond the offline experiments, we deployed 
the best model in a Telegram bot to enable real-time 
food recognition for users. This deployment high-
lights potential practical applications of the work 
– ranging from dietary monitoring and nutritional 
analysis to digital heritage preservation and smart 
restaurant menus. A user can now photograph a 
meal and instantly receive the dish name and related 
information, illustrating how AI can bridge cultural 
knowledge gaps and make healthy eating more ac-
cessible. 

While our model performs excellently on the 
classes it knows, we recognize that Kazakh cuisine 
is rich and varied; there remain regional dishes and 
nuances that are not yet included. Future efforts will 
focus on expanding the dataset (both in breadth of 
classes and depth of examples per class) and im-
proving the model’s robustness. Techniques such 
as attention mechanisms, more advanced augmen-
tation (e.g. generative methods), or ensemble mod-
eling could further enhance the system’s ability to 
discern subtle differences. We also plan to gather 
feedback and difficult cases from the Telegram bot 
deployment to continually refine the model in a real-
world feedback loop.

In future work, we plan to explore attention-
based models and vision transformers (ViTs), which 
have shown strong performance in fine-grained im-
age classification. These architectures may help im-

prove recognition of visually similar dishes by mod-
eling long-range dependencies in the images. 

We also intend to make the trained model, 
full dataset, and source code publicly available 
through a dedicated GitHub repository. This will 
allow other researchers to reproduce the results, 
test the system under different conditions, and ex-
tend the methodology to other cultural or domain-
specific food classification tasks. The planned 
release will include pretrained model weights, 
training and inference scripts, annotated sample 
data, and deployment guidelines to facilitate 
practical use in educational or real-world applica-
tions.

In conclusion, this work serves as a successful 
case study of applying state-of-the-art deep learning 
techniques to a previously underrepresented image 
recognition problem. By focusing on traditional Ka-
zakh food, we contribute to the digital documenta-
tion of Kazakhstan’s culinary heritage and provide 
a foundation for similar initiatives on other national 
cuisines. The methodology and insights presented 
here can be generalized to develop recognition sys-
tems for other cultural food domains, ultimately 
combining technology and culture to benefit both 
health tracking and the preservation of culinary tra-
ditions. and their implications. Avoid introducing 
new data or extensive discussions not previously 
covered.
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