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COMPARATIVE ANALYSIS OF CNN MODELS  
FOR DETECTING CARDIOVASCULAR DISEASES

Abstract. In modern medical practice, cardiovascular diseases (CVDs) remain among the leading 
causes of mortality and morbidity worldwide. Electrocardiography (ECG) continues to be one of the es-
sential non-invasive methods for diagnosing cardiac rhythm disturbances and other myocardial patholo-
gies. However, traditional ECG analysis relies heavily on specialist interpretation, which can be subjec-
tive and prone to human error. With advances in machine learning and deep learning, there is now an 
opportunity to automate and standardize the diagnostic process. In this study, convolutional neural net-
works (CNNs)–specifically the ResNet50 and VGG16 architectures–are applied to classify ECG images. 
Hyperparameter tuning is conducted to optimize batch size and learning rate. In addition, a prototype 
web service is presented, implemented with React for the frontend and Django REST Framework for the 
backend, that allows real-time, automated ECG classification. This approach has the potential to ease the 
workload of cardiologists and enhance the objectivity of diagnosis in clinical environments.

Keywords: machine learning, ECG classification, deep neural networks, ResNet50, VGG16, hyper-
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1. Introduction

Cardiovascular diseases (CVDs) are widely rec-
ognized as one of the foremost causes of mortality 
worldwide, consistently accounting for a substantial 
proportion of death and disability rates according to 
recent reports by the World Health Organization [1]. 
Numerous strategies have been employed in clini-
cal practice to manage, prevent, and diagnose these 
conditions, reflecting the immense global burden 
placed on healthcare systems. Despite the availabil-
ity of a wide array of diagnostic methods, electro-
cardiography (ECG) remains fundamental due to its 
non-invasive nature, cost-effectiveness, and ability 
to provide rapid insights into cardiac health. ECGs 
capture the electrical activity of the heart over a spe-
cific duration, making them instrumental for detect-
ing a variety of arrhythmias, ischemic changes, and 
other cardiac pathologies. Nevertheless, conven-
tional ECG interpretation relies heavily on special-
ized expertise, which can be both time-consuming 
and prone to inter-observer variability [2]. As a 
result, automated and standardized approaches to 
ECG analysis have become increasingly desirable 
to improve diagnostic precision and efficiency.

The landscape of medical diagnostics has 
evolved significantly with advances in machine 
learning (ML) and deep learning (DL). Traditional 

ML algorithms, such as support vector machines or 
random forests, have demonstrated their utility in 
tasks like anomaly detection and feature-based clas-
sification. However, these methods often depend on 
handcrafted features and may lack robustness when 
applied to complex medical images. By contrast, 
deep learning models–particularly convolutional 
neural networks (CNNs)–have shown remarkable 
capabilities in extracting hierarchical features di-
rectly from images or signals, obviating the need 
for extensive manual feature engineering [3]. CNNs 
have proven efficacious in domains ranging from 
radiology, where they support the classification of 
X-ray, CT, and MRI scans, to dermatology, where 
they assist in identifying malignant skin lesions 
from dermoscopic images [4]. This success natural-
ly extends to ECG analysis, where CNNs can learn 
patterns in waveforms that correlate with specific 
cardiac conditions.

Among the diverse CNN architectures intro-
duced over the past decade, two have consistently 
garnered attention in the research community: 
VGG16 and ResNet50. VGG16 is known for its 
systematic arrangement of convolutional and pool-
ing layers, featuring 16 weight layers in total [5]. 
Despite its relatively older design, VGG16 remains 
a popular choice due to its simplicity and effective-
ness, making it easier to interpret and modify. In 
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contrast, ResNet50 addresses the vanishing gradient 
problem by introducing residual connections that al-
low gradients to flow more efficiently through deep-
er networks [6]. Such connections effectively cre-
ate “shortcuts” within the network, improving both 
training stability and final performance. This archi-
tectural innovation makes ResNet50 appealing for 
tasks requiring high accuracy, especially when large 
datasets or complex image structures are involved.

The choice between these architectures can be 
influenced by multiple factors, including dataset 
size, computational resources, and the specific char-
acteristics of the images in question. ECG images, 
which often present subtle morphological differ-
ences between pathological and normal waveforms, 
can benefit from deeper representations if the data-
set is sufficiently diverse and well-annotated. Con-
versely, simpler architectures may suffice when data 
is limited or less complex. Regardless of the model, 
hyperparameter tuning is critical to maximizing 
performance. Hyperparameters such as batch size 
and learning rate play a pivotal role in network con-
vergence and generalization [7]. A large batch size 
might expedite computations on modern GPU clus-
ters but risks smoothing out gradient signals, while 
an excessively high learning rate can cause the mod-
el to skip local minima and converge poorly. Sys-
tematic experimentation and grid or random search 
methods typically guide the selection of optimal hy-
perparameters.

In addition to choosing the most suitable CNN 
architecture and refining model hyperparameters, it 
is crucial to design a functional solution that can be 
seamlessly integrated into clinical workflows. Aca-
demic and industrial research often emphasize the 
accuracy of classification models but give less at-
tention to the process of deploying such models in 
real-world healthcare settings. To address this gap, 
a web-based platform has been developed, leverag-
ing React for building an interactive user interface 
and Django REST Framework for managing server-
side logic and API endpoints. Through this system, 
medical personnel are able to upload ECG images 
with minimal effort. Once uploaded, each image is 
processed in near real-time by one of the CNN mod-
els–ResNet50 or VGG16–trained on a labeled ECG 
dataset. The classification results are then returned 
to the user interface, reducing the time required for 
diagnostic interpretation and supporting more con-
sistent decision-making.

Such an application can prove invaluable in re-
gions lacking adequate medical infrastructure. Rural 
or underserved areas may face shortages of quali-

fied cardiologists, leading to delays in diagnosis and 
treatment. By enabling frontline healthcare work-
ers or technicians to quickly obtain classification 
results, the proposed approach can facilitate timely 
clinical interventions and potentially improve pa-
tient outcomes. Moreover, the scalability of a web-
based solution allows it to be deployed in multiple 
clinical facilities, with the possibility of centrally 
updating or retraining the models as new data be-
comes available.

Future endeavors can incorporate additional re-
finements, such as data augmentation to enlarge the 
diversity of training samples, domain adaptation for 
handling ECG variations across different popula-
tions, and multi-class classification to discriminate 
among multiple arrhythmia subtypes. Advanced 
frameworks, including Transfer Learning and Ex-
plainable Artificial Intelligence (XAI), may further 
enhance model performance and transparency [8]. 
Transfer Learning can harness existing pre-trained 
weights–obtained from large, general-purpose im-
age datasets–to accelerate the training process on 
relatively modest ECG data collections. Meanwhile, 
XAI can illuminate the regions or features within 
an ECG image that contribute most significantly to 
the model’s classification decision, building greater 
trust among clinicians.

2. Literature review

A substantial body of research has explored 
the utilization of convolutional neural networks 
(CNNs) for electrocardiogram (ECG) classification, 
encompassing both raw time-series signal data and 
visual representations in the form of ECG images. 
This duality of approaches stems from the flexibility 
of CNNs to operate across different data modalities 
while maintaining high diagnostic performance.

One of the pioneering contributions in this area 
was made by Acharya et al. [9], who developed a 
deep CNN model specifically designed to detect 
myocardial infarction (heart attack) directly from 
raw ECG signals. Their model architecture included 
multiple convolutional and pooling layers tailored 
to capture relevant features from the waveform 
data, culminating in a fully connected layer that per-
formed the classification. The experimental results 
demonstrated a remarkably high level of accuracy, 
sensitivity, and specificity, reinforcing the potential 
of deep learning to outperform traditional rule-based 
or manually engineered approaches. Although this 
work relied on one-dimensional signal input, the un-
derlying architectural concepts–such as hierarchical 
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feature extraction and layer-wise abstraction–are di-
rectly transferable to two-dimensional image-based 
CNNs. This connection underscores the versatility 
of CNN architectures across different ECG formats.

In a complementary effort, Kachuee et al. [10] 
introduced a hybrid deep learning architecture that 
combined the strengths of CNNs with recurrent 
neural networks (RNNs) to enhance arrhythmia 
detection. In their system, CNNs were responsible 
for spatial feature extraction from short windows of 
ECG signals, while RNNs, specifically gated recur-
rent units (GRUs), captured temporal dependencies 
and sequence-level context. This architecture effec-
tively leveraged the strengths of both model types: 
the CNN’s ability to extract robust spatial features 
and the RNN’s capacity for handling sequential 
information. Additionally, the authors incorpo-
rated residual connections–originally popularized 
in ResNet architectures–to combat issues such as 
vanishing gradients and to allow for deeper, more 
expressive models. This architectural choice set the 
stage for later adaptations, including the adoption of 
deeper CNNs like ResNet50 in ECG tasks.

Focusing specifically on image-based ECG 
analysis, Luz et al. [11] conducted a notable study 
demonstrating the potential of CNNs to classify 
arrhythmias using two-dimensional representa-
tions of ECGs. These visual formats, often created 
by plotting ECG signals and converting them into 
grayscale or RGB images, allow CNNs to identify 
spatial patterns and morphological features–such as 
QRS complex shape, ST-segment deviations, or P-
wave abnormalities–that may be less evident in raw 
signal form. Luz et al.’s results offered some of the 
first concrete evidence that CNNs trained on ECG 
images could achieve comparable, if not superior, 
performance to traditional signal-based methods. 
This opened new avenues for using well-established 
image classification architectures in cardiology.

Building on this trend, Yildirim [12] introduced 
an innovative hybrid approach that integrated discrete 
wavelet transforms (DWTs) with CNNs to perform 
heartbeat classification. Wavelet transforms were 
employed to decompose the ECG signal into multiple 
frequency bands, capturing both time-domain and 
frequency-domain information. These transformed 
signals were then rendered as images and fed into a 
CNN for classification. This methodology allowed 
for the preservation of both temporal resolution and 
spectral features, offering a richer input representa-
tion. The resulting model achieved strong classifica-
tion metrics and further confirmed the adaptability of 
CNNs when applied to hybrid signal-image domains.

A major milestone in deep learning-based ECG 
interpretation came from the work of Rajpurkar et 
al. [13], who developed the “Cardiologist-Level” 
model–an advanced CNN trained on a massive da-
taset of over 90,000 single-lead ECG recordings. 
The model was capable of detecting over a dozen 
types of arrhythmias with diagnostic accuracy that 
matched or exceeded that of experienced board-cer-
tified cardiologists. Although their model operated 
on 1D signal data, the training methodology, dataset 
curation, and emphasis on clinical benchmarking set 
a new standard for ECG classification research. Fur-
thermore, the study’s success catalyzed broader in-
terest in adapting similar deep learning frameworks 
for ECG images, as researchers sought to replicate 
such high performance in settings where only visual 
data is available.

These foundational studies–spanning both sig-
nal-based and image-based ECG analysis–provide 
strong justification for investigating and compar-
ing the effectiveness of different CNN architec-
tures, particularly VGG16 and ResNet50, in the 
context of ECG image classification. Both archi-
tectures have shown promise in various computer 
vision domains, yet their comparative strengths 
and limitations in the domain of medical imag-
ing, specifically ECGs, remain an active area of 
exploration. The current study aims to build upon 
this body of work by implementing and evaluating 
these two models using a curated dataset of ECG 
images, with the ultimate goal of identifying which 
architecture offers superior performance for this 
clinically significant task.

3. Materials and Methods

3.1 Dataset Overview
The dataset, shown in Figure 1, originates from 

the Kaggle repository titled “ECG Images Dataset 
of Cardiac Patients” prepared by user EvilSpirit05 
in 2023 [14].

Unlike many ECG collections that offer raw 
waveform signals, this resource supplies complete 
ECG images, each in a consistent resolution and 
brightness level, thereby reducing the variability 
stemming from differences in scanning equipment 
or lighting conditions. These images generally cap-
ture one or more distinct heartbeat cycles, labeled 
by professional or automated annotation systems. 
Possible labels range from normal sinus rhythm to 
various arrhythmic conditions, and each image is 
stored in a standardized format (for instance, PNG 
or JPEG) at identical pixel dimensions.
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Figure 1 – ECG images dataset

Because of its inherent uniformity, the da-
taset typically eliminates the need for extensive 
resizing or brightness normalization. Each im-
age retains a similar visual structure: a standard 
grayscale depiction of the ECG trace on a back-
ground with controlled contrast and clarity. The 
class balance can vary (some pathologies may be 
underrepresented), but the consistent presenta-
tion across images simplifies model training since 
convolutional neural networks can more readily 
generalize from a uniform set of visual patterns. 
Researchers accessing this Kaggle resource thus 
begin with a stable baseline, negating common 
difficulties such as irregular cropping or widely 
differing resolutions.

To ensure robust evaluation of the proposed 
models, the process was divided into three clearly 
defined stages: training, validation, and testing. 
These stages were applied consistently to both 
VGG16 and ResNet50.

- Training Stage: 70% of the total ECG image 
dataset was used to train the models. During this 
phase, weights were optimized using backpropaga-
tion. Data were fed in mini-batches of 16 or 32 im-
ages, resized to 224×224 pixels, and normalized to 
a [0, 1] scale. Data augmentation techniques were 
optionally applied, though the dataset’s consisten-
cy often rendered them unnecessary. Models were 

trained using the Adam or SGD optimizer, with 
dropout and batch normalization optionally applied 
to prevent overfitting.

- Validation Stage: 15% of the data was re-
served for validation, helping monitor model gen-
eralization in real time. After each epoch, perfor-
mance on this set was evaluated using metrics such 
as validation loss, accuracy, and F1-score. Early 
stopping was applied if no improvements were ob-
served over a predefined number of epochs (typi-
cally 5), and the best-performing model checkpoint 
was saved.

- Testing Stage: The final 15% of the data, not 
used during training or validation, was used as a 
hold-out test set. After model training and selection, 
this unseen subset was used for final performance 
evaluation. Confusion matrices and classification 
metrics–including accuracy, precision, recall, and 
F1-score–were computed to assess true generaliza-
tion performance.

This structured workflow ensured reproducibil-
ity, reduced overfitting risks, and provided objective 
measurements of model effectiveness under real-
world constraints.

3.1.1 Data preprocessing
The validation set played a key role in tuning 

hyperparameters like learning rate and batch size, 
as well as preventing overfitting through early stop-
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ping. The test set remained untouched until the fi-
nal performance assessment, ensuring an unbiased 
evaluation of the trained models.

Although the Kaggle images were already uni-
form in resolution, an additional check was per-
formed to confirm they matched the 224×224 input 
size typically expected by VGG16 and ResNet50. 
In cases where the images exceeded this dimension 
or had a slightly different aspect ratio, they were 
resized (or padded/cropped minimally) to 224×224 
pixels. This resizing step guaranteed compatibility 
with the input layers of both CNN architectures and 
ensured consistent spatial dimensions across the en-
tire dataset.

Because these ECG images already exhibited 
consistent brightness, grayscale values, and mini-
mal noise, no further normalization–beyond divid-
ing pixel intensities by 255.0–was required in most 
experiments. This step placed each pixel in the [0,1] 
range, stabilizing gradient updates during backprop-
agation. During training, runtime checks confirmed 
that each batch loaded properly sized 224×224 im-
ages, which were then passed to the convolutional 

layers without additional color-space transforma-
tions or extensive augmentations.

3.2 Model Architectures
Deep convolutional neural networks remain 

central to many image-classification tasks, includ-
ing medical applications such as ECG analysis. Two 
prominent architectures, VGG16 and ResNet50, 
were chosen to classify the standardized ECG im-
ages in this project. Each network was originally 
developed for large-scale natural image recognition 
but can be adapted efficiently to medical datasets, 
particularly when those datasets are uniform in reso-
lution and brightness.

3.2.1 VGG16
VGG16, introduced by Simonyan and Zisser-

man in 2015, comprises thirteen convolutional lay-
ers and three fully connected layers, making up six-
teen weight layers in total. Its design is centered on 
repeated blocks that stack 3×3 convolutions and use 
ReLU activations, with intermittent max pooling to 
reduce spatial dimensions. Figure 2 below offers a 
schematic of this architecture, illustrating how each 
convolution and pooling stage feeds into the next.

Figure 2 – Schematic representation of VGG16.

Although it was originally created for a 
1,000-class ImageNet task, the final fully connected 
layer in VGG16 can be replaced to match the num-
ber of ECG categories in the Kaggle dataset. Dropout 
layers are often introduced within the fully connected 
portion to mitigate overfitting, and batch normaliza-
tion may be incorporated if faster convergence or ad-
ditional training stability is needed. Because this data-

set consists of uniform ECG images, VGG16 benefits 
from a consistent input dimension of 224×224 pix-
els and does not require elaborate preprocessing for 
contrast or brightness adjustments. Transfer learning 
from ImageNet-pretrained weights commonly accel-
erates convergence, allowing the network to adapt to 
distinct visual signals associated with normal or ar-
rhythmic waveforms [19-20]. 
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3.2.2 ResNet50
ResNet50, part of the Residual Network family 

established by He et al. in 2016, tackles the training 
difficulties observed in deep networks through the 

use of skip connections. These connections enable 
gradients to circumvent some convolutional layers, 
reducing the vanishing-gradient problem. Figure 3 
presents a schematic representation of ResNet50.

Figure 3 – Schematic representation of VGG16.

This design supports a depth of fifty layers, sub-
stantially more than VGG16, and permits the model 
to capture intricate visual features when provided 
with adequate data. The final layers of ResNet50, 
originally geared toward 1,000 ImageNet classes, 
are fine-tuned or replaced to handle the smaller 
number of categories in the ECG dataset. Batch nor-
malization is built into the architecture, minimizing 
covariate shift and supporting stable training even at 
deeper layers. Transfer learning from ImageNet is 
also possible, ensuring that learned representations 
are reused while the model adapts to the morpho-
logical nuances of heartbeats captured in uniform 
ECG imagery.

VGG16’s simpler structure can offer ease of 
interpretation, whereas ResNet50, by being deeper, 
may learn more nuanced distinctions among wave-
forms. The remainder of this paper examines how 
these architectural differences translate into vary-
ing classification accuracies, training dynamics, and 
model complexities.

3.3. Hyperparameter Tuning
Hyperparameter tuning played a pivotal role in 

optimizing the performance of both VGG16 and 
ResNet50 when classifying the Kaggle-based ECG 
images, echoing broader findings on the impor-
tance of choosing effective learning rate schedules 
for deep learning [15]. This step primarily targeted 
batch size and learning rate, as these two parameters 
have the most direct impact on model convergence 
and generalization.

These particular hyperparameters were selected 
because they exert a disproportionately high influ-

ence on the dynamics of training deep neural net-
works. The learning rate determines the magnitude 
of weight updates during backpropagation, directly 
influencing how quickly and effectively the model 
learns [16-18]. An improper learning rate can either 
cause the model to diverge (if too high) or lead to 
extremely slow convergence (if too low). Mean-
while, batch size affects the frequency and stability 
of gradient updates. Smaller batches provide noisy 
but potentially more generalizable updates, while 
larger batches allow for more efficient computation 
and smoother gradients.

Other hyperparameters, such as number of ep-
ochs, activation functions, or optimizer choice, were 
held constant in this study. This allowed the investi-
gation to focus on learning rate and batch size, which 
are widely recognized in the deep learning commu-
nity as the most impactful and sensitive hyperparam-
eters for tuning convergence and performance.

The choice of batch sizes (16 and 32) was 
grounded in balancing computational efficiency and 
model performance. A batch size of 16 was selected 
initially to provide more frequent weight updates, 
which introduces helpful noise during gradient de-
scent and can help the model escape local minima. 
However, it also increases training time. A batch 
size of 32, in contrast, is well-aligned with the mem-
ory capacity of modern GPUs and allows for stable 
convergence without overloading system resources. 
Our experiments showed that a batch size of 32 
consistently yielded higher accuracy, likely due to 
smoother gradients and more consistent loss mini-
mization over mini-batches.
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The learning rates (0.001, 0.0001, 0.00001) 
were chosen to represent a descending range from 
fast to slow convergence. A rate of 0.001 is standard 
in many CNN setups and was expected to give rapid 
initial convergence. However, deeper networks like 
ResNet50 showed instability at this rate. The mid-
level rate of 0.0001 provided the best trade-off: suf-
ficiently fast learning while maintaining stability 
and avoiding overshooting minima. The smallest 
rate, 0.00001, ensured extremely gradual updates–
useful for fine-tuning or avoiding divergence–but at 
the cost of longer training times.

This tuning process followed a grid search 
approach, a systematic method for exhaustively 
searching through a predefined subset of hyper-
parameters. Specifically, the combinations of two 
batch sizes (16 and 32) and three learning rates 
(0.001, 0.0001, 0.00001) were evaluated, forming a 
total of six configurations. Each configuration was 
trained independently on the same training and vali-
dation splits to ensure consistency and fairness in 
comparison. For each run, metrics such as accuracy, 
precision, and F1-score were monitored to assess 
performance.

Grid search was chosen over random search or 
Bayesian optimization due to its simplicity and com-
plete coverage of the small parameter space. Since 
the computational cost was manageable–thanks to 
the relatively small dataset size and the use of trans-
fer learning–grid search offered a practical balance 
between thoroughness and efficiency. Ultimately, it 
enabled the precise identification of optimal config-
urations without introducing additional tuning com-
plexity. For each pair, performance metrics were 
logged on both validation and test sets. As summa-
rized in the Results section, VGG16 with batch size 
32 and learning rate 0.0001 or 0.00001 performed 
best, reaching 98% accuracy. These results indicate 
that even on relatively small, clean datasets, proper 
tuning is vital to achieving optimal performance.

3.4. Training Procedure and Implementation 
Details

Following hyperparameter tuning, the chosen 
configurations for learning rate and batch size were 
applied consistently to VGG16 and ResNet50 across 
multiple training runs. Training was conducted on 
a Python 3.9 environment, primarily using Tensor-
Flow (Keras) or PyTorch. GPU acceleration, often 
provided by NVIDIA RTX-series devices, allowed 
mini-batch gradient updates at a reasonable speed 
even for deeper architectures like ResNet50. Each 
epoch processed all images within the training set, 
with the optimizer–either Adam or stochastic gradi-

ent descent with momentum–updating weights via 
backpropagation. Dropout and batch normalization 
were introduced in certain experiments to combat 
overfitting or stabilize activation distributions.

An early stopping strategy again leveraged vali-
dation metrics to determine when training should 
halt. Once improvements in validation accuracy or 
F1-score plateaued for several consecutive epochs, 
the process ended to conserve resources and avoid 
overfitting. A final model checkpoint, representing 
the highest validation performance, was reserved 
for the test evaluation phase. Because the ECG im-
ages all shared a 224×224 resolution and consistent 
brightness, runtime preprocessing remained mini-
mal beyond ensuring that each batch loaded cor-
rectly.

A brief web application prototype was devel-
oped to illustrate how these trained models might 
function in a clinical or research environment. The 
backend, built with Django REST Framework, ac-
cepted uploaded ECG images and performed classi-
fication with either VGG16 or ResNet50, depending 
on which model was selected as the top performer. 
A React-based frontend allowed users to upload im-
age files through a concise interface, and the server 
responded with class predictions in real time. The 
screenshot below (Figure 4) shows an example of 
the page where users can upload their ECG images 
for classification.

In a full production setting, security measures 
such as HTTPS, authentication, and audit logging 
would be implemented to satisfy data protection 
requirements [21-22]. Containerization solutions 
could also be adopted to facilitate scalability across 
multiple clinical sites or research laboratories. Al-
though this prototype was not configured for large-
scale deployments, it demonstrated the feasibility of 
integrating a CNN-based ECG classification system 
into a practical application accessible to end us-
ers. By automating the image upload and inference 
processes, the tool potentially reduces the need for 
specialized technical expertise while offering near-
instant diagnostic support.
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Figure 4 – Sample upload interface for the ECG classification web application.

3.5. Technical Implementation Details
The training and evaluation of the models were 

conducted in a high-performance computing envi-
ronment equipped with an NVIDIA Tesla T4 GPU 
(15 GB VRAM), running CUDA 12.4 and driver 
version 550.54.15. The experiments were imple-
mented in Python 3.11.12 using TensorFlow 2.18.0 
as the primary deep learning framework. More de-
tails shown on Figure 5.

All models were trained using GPU accelera-
tion, with the TensorFlow backend configured to 
automatically allocate GPU memory as needed. 
During training, typical memory usage ranged from 

8.3 GB to 11.5 GB, depending on the model size 
and batch configuration.

Both VGG16 and ResNet50 architectures were 
initialized using ImageNet pre-trained weights and 
fine-tuned on the ECG image dataset. Model train-
ing was performed using a batch size of 32, a learn-
ing rate of 0.0001, and 30 epochs per run. The Adam 
optimizer was employed with categorical cross-en-
tropy as the loss function. 

Each epoch took approximately 60–80 seconds, 
depending on model complexity. Each epoch train-
ing time shown on Figure 6 for VGG16 and Figure 
7 for ResNet50.

Figure 5 – Technical parameters of computer.
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Figure 6 – VGG16 model training time.

Figure 7 – ResNet50 model training time.

In addition, early stopping was implemented to 
prevent overfitting, and training logs (loss, accu-
racy, and validation metrics) were recorded for all 
runs. Post-training evaluation was conducted on a 
separate test set using confusion matrices and F1-
score analysis.

4. Results

Initial experiments compared VGG16 and 
ResNet50 under identical training conditions: epoch 

count set to 20, a batch size of 16, and a learning rate 
of 0.0001. Under these parameters, VGG16 reached 
a classification accuracy of 92%, while ResNet50 
attained 81%. Figure 8 presents the confusion ma-
trix for VGG16 in this initial run, illustrating that 
misclassifications were generally concentrated in 
a small subset of classes. Figure 9 shows the cor-
responding confusion matrix for ResNet50, where 
off-diagonal entries are more pronounced, indicat-
ing that certain pathological and normal ECG cat-
egories were not as distinctly separated.
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Figure 8 – Confusion matrix of VGG16 model.

Figure 9 – Confusion matrix of ResNet50 model.

Observing that VGG16 outperformed 
ResNet50 in these initial trials, subsequent at-
tention turned exclusively to VGG16 for a 
deeper exploration of hyperparameters. The 
new tests all remained at 20 epochs but varied 
batch size (16 or 32) and learning rate (0.001, 

0.0001, 0.00001). Higher batch sizes introduced 
fewer but more stable gradient updates each ep-
och, while lower learning rates tended to refine 
weights more gradually. Table 1 below summa-
rizes the final accuracy values across these pa-
rameter combinations:
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Table 1 – Evaluation metrics of VGG16 under different hyperparameter settings.

Batch size Learning rate Accuracy Recall Precision F1-score

16
0.001 0.97 0.9675 0.97 0.97
0.0001 0.92 0.9275 0.9175 0.915
0.00001 0.93 0.9225 0.925 0.925

32
0.001 0.96 0.9475 0.96 0.9525
0.0001 0.98 0.9825 0.98 0.9825
0.00001 0.98 0.9825 0.98 0.9825

Accuracy notably improved under several of 
these setups. When the batch size was 32 and the 
learning rate set to either 0.0001 or 0.00001, the 
model achieved 98%, marking the highest classifi-
cation success observed in this study. Figure 10 pro-
vides a composite display of confusion matrices for 
each hyperparameter variation tested with VGG16. 

The diagrams illustrate how higher accuracies cor-
responded to fewer off-diagonal errors, particularly 
in ECG classes that presented subtle morphological 
distinctions. All experiments consistently ran for 20 
epochs, without early stopping or reduction in the 
number of iterations, ensuring a uniform basis for 
comparison across different parameter settings.

Figure 10 – Confusion matrices of models with tuned hyperparameters.

5. Discussion

The findings of this study demonstrate a signifi-
cant difference in performance between two promi-
nent convolutional neural network (CNN) architec-

tures, VGG16 and ResNet50, when applied to the 
classification of standardized ECG images. Under 
identical training conditions, VGG16 consistently 
outperformed ResNet50, achieving a peak accuracy 
of 98% under optimal hyperparameter configura-
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tions. This superior performance can be attributed 
to VGG16’s simpler architecture, which may offer 
better generalization capabilities on relatively small 
or uniform datasets, as is the case with the ECG im-
age dataset used in this research.

ResNet50, while theoretically more power-
ful due to its deeper architecture and residual 
connections, may be more prone to overfitting 
or underfitting when applied to datasets lacking 
diversity or scale. The confusion matrices illus-
trated in Figure 9 show that ResNet50 produced 
more misclassifications compared to VGG16, 
particularly among arrhythmic classes with 
subtle morphological differences. The reduced 
performance highlights the necessity for either 
more extensive data augmentation, regulariza-
tion, or dataset scaling when deploying deeper 
models like ResNet50.

Hyperparameter tuning played a pivotal role 
in optimizing the performance of the models. The 
results suggest that a batch size of 32 and learn-
ing rates of 0.0001 or 0.00001 provide the best 
outcomes for VGG16, confirming that stability in 
gradient updates and moderate learning steps lead 
to superior convergence. Figure 10 supports this ob-
servation, showing clearer separation of classes and 
fewer off-diagonal entries in the confusion matrices 
for well-tuned configurations.

5.1. Training and Validation Curves
ResNet50: The training and validation curves for 

ResNet50 are illustrated in Figure 11 (accuracy and 
loss). As shown, the model demonstrates a gradual 
increase in training accuracy over 30 epochs, reach-
ing above 80%. However, the validation accuracy 
is highly variable, with noticeable oscillations be-
tween epochs. This instability suggests sensitivity to 
specific mini-batches and possible overfitting.

In terms of loss, both training and validation 
loss exhibit a steady downward trend, starting from 
approximately 1.4 and converging toward 0.55. De-
spite this improvement, the final loss values remain 
higher than those of VGG16, indicating less effec-
tive optimization.

VGG16: Figure 12 (accuracy and loss) present 
the training dynamics for VGG16. The accuracy 
curve shows rapid convergence within the first 10 
epochs, with both training and validation accuracy 
stabilizing above 95%. The close tracking of valida-
tion accuracy to training accuracy indicates excel-
lent generalization.

The corresponding loss graph further supports 
this conclusion. Both curves descend smoothly, 
converging near 0.2 by the end of training. Mini-
mal divergence between the training and validation 
losses demonstrates that the model is not overfitting 
and is learning robust representations.

Figure 11 – Accuracy and loss curve of ResNet50.
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Figure 12 – Accuracy and loss curve of VGG16.

5.2. Limitations and Interpretability
This study has several limitations that must be 

addressed in future work. First, the dataset is de-
rived from a single publicly available source and 
may not capture the full spectrum of ECG variation 
found in clinical practice. This limits generalizabil-
ity across different patient populations or recording 
devices. Second, only two CNN architectures were 
explored. Future research should include a broader 
range of models, including lightweight architectures 
for edge deployment and hybrid CNN-RNN frame-
works for temporal data.

Additionally, this study did not incorporate in-
terpretability tools. The inclusion of explainable AI 
(XAI) techniques, such as Grad-CAM, would help 
clinicians understand which parts of the ECG con-
tributed most to the model’s decisions, thereby en-
hancing trust and facilitating adoption.

One of the key limitations of the current study 
is the lack of assessment of model robustness to 
real-world distortions frequently encountered in 
ECG acquisition. Factors such as poor electrode 
contact, patient motion, or electrical interference 
can introduce noise and artifacts that alter ECG 
morphology. As the dataset used in this study 
consists of clean, high-resolution ECG images, 
the performance of the trained models under 
noisy or artifact-laden conditions remains un-
tested. Future work should incorporate synthetic 
noise injection, real-world distorted samples, or 
domain adaptation techniques to evaluate and 

improve the resilience of CNN models to such 
perturbations.

5.3. Clinical Applicability
The developed web service prototype demon-

strates the feasibility of deploying deep learning 
models for real-time ECG classification in clinical 
or remote settings. Potential use cases include:

- Rural clinics lacking cardiologists, where 
healthcare workers can obtain preliminary diagno-
ses.

- Emergency departments needing quick triage 
of incoming ECGs.

- Telemedicine platforms for continuous remote 
monitoring.

- Educational settings for training medical stu-
dents and technicians.

In real-world deployment, enhancements such 
as HTTPS encryption, role-based access, user au-
thentication, and compliance with data protection 
regulations (e.g., GDPR, HIPAA) will be essential. 
Integration with hospital information systems and 
mobile devices can further extend accessibility.

5.4. Statistical Analysis of Multiple Runs
To evaluate the robustness and stability of the 

proposed VGG16 model, the training and testing 
pipeline was executed over 5 independent runs us-
ing identical hyperparameter settings (batch size = 
32, learning rate = 0.0001, epochs = 30). This ap-
proach accounts for stochastic variability introduced 
by random weight initialization, data shuffling, and 
mini-batch selection.
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For each run, performance was measured on the 
hold-out test set using four primary metrics: accu-
racy, precision, recall, and F1-score. The mean and 
standard deviation for each metric are summarized 
below:

- Accuracy: 0.9758 ± 0.0017
- Precision: 0.9772 ± 0.0021
- Recall: 0.9738 ± 0.0020
- F1-score: 0.9754 ± 0.0021
The narrow standard deviations across all met-

rics indicate a high degree of consistency in model 

performance across different runs. This consistency 
strengthens the reliability of the VGG16 architec-
ture in classifying ECG images under the current 
dataset and training configuration.

Figure 13 presents a bar plot of the average 
scores for each metric, accompanied by error bars 
representing ±1 standard deviation. The consistent-
ly high scores and low variance further support the 
claim that the model generalizes well across the da-
taset and is not highly sensitive to random initializa-
tion or data splits.

Figure 13 – Performance metrics

5.5. Architectural Improvements and Future Ex-
tensions

To further enhance the classification perfor-
mance and generalization capabilities of the models, 
several architectural improvements and advanced 
strategies may be considered in future research:

- Attention mechanisms such as Squeeze-and-
Excitation (SE) blocks or Convolutional Block At-
tention Modules (CBAM) can be integrated into 
baseline architectures like VGG16 or ResNet50. 
These modules help the network focus on diagnosti-
cally relevant spatial features within ECG images, 
potentially improving sensitivity to subtle morpho-
logical differences.

- Model ensembling could also be explored, 
where predictions from multiple models (e.g., 

VGG16, ResNet50, and even lightweight architec-
tures) are combined using soft voting or stacking. 
Alternatively, extracted features from both CNNs 
could be aggregated and passed into a meta-classi-
fier such as XGBoost for final prediction. This ap-
proach may increase robustness and accuracy.

- Incorporating lightweight or next-generation 
architectures, such as MobileNetV2 or EfficientNet, 
may reduce computational load while maintaining 
high accuracy. These models are especially relevant 
for edge deployment scenarios, such as portable 
ECG devices or real-time mobile diagnostics.

Exploring these directions can help optimize 
both predictive power and practical deployment, 
thereby increasing the clinical relevance of ECG 
image classification models.
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6. Conclusions

The primary aim of this research was to iden-
tify the most effective deep learning approach for 
classifying standardized ECG images. The data-
set originated from a Kaggle repository, featuring 
scans in uniform brightness and resolution. The use 
of VGG16 and ResNet50 architectures allowed for 
a comparative analysis under consistent training 
conditions. From the initial tests, VGG16 demon-
strated higher classification performance relative to 
ResNet50, prompting further hyperparameter tuning 
that confirmed VGG16’s suitability for ECG clas-
sification in this setting.

The process involved a stable training routine of 
20 epochs, with systematic variations in batch size 
and learning rate. The results indicated that hyper-
parameter adjustments–particularly batch size of 32 
and learning rate of 0.0001 or 0.00001–could sub-
stantially elevate VGG16’s accuracy, reaching up to 
98%. Confusion matrices revealed that even subtle 
morphological distinctions in ECG waveforms were 
correctly recognized when the model was appropri-
ately tuned.

Implementing this workflow involved minimal 
data preprocessing efforts, given the dataset’s inher-
ent uniformity, yet highlighted the critical influence 
of hyperparameters on convergence and generaliza-
tion. A web-based prototype was subsequently de-
veloped, integrating the trained model into a Django 

REST and React framework, thereby demonstrating 
the feasibility of near-real-time inference.

Overall, these findings illustrate how a well-
chosen architecture, combined with measured ex-
perimentation on learning rate and batch size, can 
unlock high levels of accuracy in medical image 
classification. Future work could investigate more 
extensive data augmentation, integrate interpret-
ability modules, or broaden the dataset scope to in-
clude additional arrhythmias or clinical scenarios. 
The encouraging performance results also suggest 
the viability of deploying such models in clinical 
workflows, particularly in settings that benefit from 
consistent ECG capture protocols and reliable clas-
sification.
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