
ISSN 2958-0846 eISSN 2958-0854 Journal of Problems in Computer Science and Information Technologies №2 (3) 2025 https://jpcsit.kaznu.kz

© 2025 Al-Farabi Kazakh National University 29Licensed under CC BY-NC 4.0

IRSTI 28.23.15 https://doi.org/10.26577/jpcsit20253203

Alfarabi Mazhit 1,* , Nazgul Zakariyanova 2
1 Kazakh-British Technical University, Almaty, Kazakhstan

2 Al-Farabi Kazakh National University, Almaty, Kazakhstan
*e-mail: a-mazhit@mail.ru

COMPARATIVE ANALYSIS OF CNN MODELS
FOR DETECTING CARDIOVASCULAR DISEASES

Abstract. In modern medical practice, cardiovascular diseases (CVDs) remain among the leading
causes of mortality and morbidity worldwide. Electrocardiography (ECG) continues to be one of the es-
sential non-invasive methods for diagnosing cardiac rhythm disturbances and other myocardial patholo-
gies. However, traditional ECG analysis relies heavily on specialist interpretation, which can be subjec-
tive and prone to human error. With advances in machine learning and deep learning, there is now an
opportunity to automate and standardize the diagnostic process. In this study, convolutional neural net-
works (CNNs)–specifically the ResNet50 and VGG16 architectures–are applied to classify ECG images.
Hyperparameter tuning is conducted to optimize batch size and learning rate. In addition, a prototype
web service is presented, implemented with React for the frontend and Django REST Framework for the
backend, that allows real-time, automated ECG classification. This approach has the potential to ease the
workload of cardiologists and enhance the objectivity of diagnosis in clinical environments.

Keywords: machine learning, ECG classification, deep neural networks, ResNet50, VGG16, hyper-
parameter tuning, Django REST Framework, React, cardiology, computer vision

1. Introduction

Cardiovascular diseases (CVDs) are widely rec-
ognized as one of the foremost causes of mortality
worldwide, consistently accounting for a substantial
proportion of death and disability rates according to
recent reports by the World Health Organization [1].
Numerous strategies have been employed in clini-
cal practice to manage, prevent, and diagnose these
conditions, reflecting the immense global burden
placed on healthcare systems. Despite the availabil-
ity of a wide array of diagnostic methods, electro-
cardiography (ECG) remains fundamental due to its
non-invasive nature, cost-effectiveness, and ability
to provide rapid insights into cardiac health. ECGs
capture the electrical activity of the heart over a spe-
cific duration, making them instrumental for detect-
ing a variety of arrhythmias, ischemic changes, and
other cardiac pathologies. Nevertheless, conven-
tional ECG interpretation relies heavily on special-
ized expertise, which can be both time-consuming
and prone to inter-observer variability [2]. As a
result, automated and standardized approaches to
ECG analysis have become increasingly desirable
to improve diagnostic precision and efficiency.

The landscape of medical diagnostics has
evolved significantly with advances in machine
learning (ML) and deep learning (DL). Traditional

ML algorithms, such as support vector machines or
random forests, have demonstrated their utility in
tasks like anomaly detection and feature-based clas-
sification. However, these methods often depend on
handcrafted features and may lack robustness when
applied to complex medical images. By contrast,
deep learning models–particularly convolutional
neural networks (CNNs)–have shown remarkable
capabilities in extracting hierarchical features di-
rectly from images or signals, obviating the need
for extensive manual feature engineering [3]. CNNs
have proven efficacious in domains ranging from
radiology, where they support the classification of
X-ray, CT, and MRI scans, to dermatology, where
they assist in identifying malignant skin lesions
from dermoscopic images [4]. This success natural-
ly extends to ECG analysis, where CNNs can learn
patterns in waveforms that correlate with specific
cardiac conditions.

Among the diverse CNN architectures intro-
duced over the past decade, two have consistently
garnered attention in the research community:
VGG16 and ResNet50. VGG16 is known for its
systematic arrangement of convolutional and pool-
ing layers, featuring 16 weight layers in total [5].
Despite its relatively older design, VGG16 remains
a popular choice due to its simplicity and effective-
ness, making it easier to interpret and modify. In

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.26577/jpcsit20253203
http://orcid.org/0009-0003-7308-2131
http://orcid.org/0009-0000-0842-5394
mailto:a-mazhit@mail.ru

30

Comparative analysis of CNN models for detecting cardiovascular diseases

contrast, ResNet50 addresses the vanishing gradient
problem by introducing residual connections that al-
low gradients to flow more efficiently through deep-
er networks [6]. Such connections effectively cre-
ate “shortcuts” within the network, improving both
training stability and final performance. This archi-
tectural innovation makes ResNet50 appealing for
tasks requiring high accuracy, especially when large
datasets or complex image structures are involved.

The choice between these architectures can be
influenced by multiple factors, including dataset
size, computational resources, and the specific char-
acteristics of the images in question. ECG images,
which often present subtle morphological differ-
ences between pathological and normal waveforms,
can benefit from deeper representations if the data-
set is sufficiently diverse and well-annotated. Con-
versely, simpler architectures may suffice when data
is limited or less complex. Regardless of the model,
hyperparameter tuning is critical to maximizing
performance. Hyperparameters such as batch size
and learning rate play a pivotal role in network con-
vergence and generalization [7]. A large batch size
might expedite computations on modern GPU clus-
ters but risks smoothing out gradient signals, while
an excessively high learning rate can cause the mod-
el to skip local minima and converge poorly. Sys-
tematic experimentation and grid or random search
methods typically guide the selection of optimal hy-
perparameters.

In addition to choosing the most suitable CNN
architecture and refining model hyperparameters, it
is crucial to design a functional solution that can be
seamlessly integrated into clinical workflows. Aca-
demic and industrial research often emphasize the
accuracy of classification models but give less at-
tention to the process of deploying such models in
real-world healthcare settings. To address this gap,
a web-based platform has been developed, leverag-
ing React for building an interactive user interface
and Django REST Framework for managing server-
side logic and API endpoints. Through this system,
medical personnel are able to upload ECG images
with minimal effort. Once uploaded, each image is
processed in near real-time by one of the CNN mod-
els–ResNet50 or VGG16–trained on a labeled ECG
dataset. The classification results are then returned
to the user interface, reducing the time required for
diagnostic interpretation and supporting more con-
sistent decision-making.

Such an application can prove invaluable in re-
gions lacking adequate medical infrastructure. Rural
or underserved areas may face shortages of quali-

fied cardiologists, leading to delays in diagnosis and
treatment. By enabling frontline healthcare work-
ers or technicians to quickly obtain classification
results, the proposed approach can facilitate timely
clinical interventions and potentially improve pa-
tient outcomes. Moreover, the scalability of a web-
based solution allows it to be deployed in multiple
clinical facilities, with the possibility of centrally
updating or retraining the models as new data be-
comes available.

Future endeavors can incorporate additional re-
finements, such as data augmentation to enlarge the
diversity of training samples, domain adaptation for
handling ECG variations across different popula-
tions, and multi-class classification to discriminate
among multiple arrhythmia subtypes. Advanced
frameworks, including Transfer Learning and Ex-
plainable Artificial Intelligence (XAI), may further
enhance model performance and transparency [8].
Transfer Learning can harness existing pre-trained
weights–obtained from large, general-purpose im-
age datasets–to accelerate the training process on
relatively modest ECG data collections. Meanwhile,
XAI can illuminate the regions or features within
an ECG image that contribute most significantly to
the model’s classification decision, building greater
trust among clinicians.

2. Literature review

A substantial body of research has explored
the utilization of convolutional neural networks
(CNNs) for electrocardiogram (ECG) classification,
encompassing both raw time-series signal data and
visual representations in the form of ECG images.
This duality of approaches stems from the flexibility
of CNNs to operate across different data modalities
while maintaining high diagnostic performance.

One of the pioneering contributions in this area
was made by Acharya et al. [9], who developed a
deep CNN model specifically designed to detect
myocardial infarction (heart attack) directly from
raw ECG signals. Their model architecture included
multiple convolutional and pooling layers tailored
to capture relevant features from the waveform
data, culminating in a fully connected layer that per-
formed the classification. The experimental results
demonstrated a remarkably high level of accuracy,
sensitivity, and specificity, reinforcing the potential
of deep learning to outperform traditional rule-based
or manually engineered approaches. Although this
work relied on one-dimensional signal input, the un-
derlying architectural concepts–such as hierarchical

31

Alfarabi Mazhit, Nazgul Zakariyanova

feature extraction and layer-wise abstraction–are di-
rectly transferable to two-dimensional image-based
CNNs. This connection underscores the versatility
of CNN architectures across different ECG formats.

In a complementary effort, Kachuee et al. [10]
introduced a hybrid deep learning architecture that
combined the strengths of CNNs with recurrent
neural networks (RNNs) to enhance arrhythmia
detection. In their system, CNNs were responsible
for spatial feature extraction from short windows of
ECG signals, while RNNs, specifically gated recur-
rent units (GRUs), captured temporal dependencies
and sequence-level context. This architecture effec-
tively leveraged the strengths of both model types:
the CNN’s ability to extract robust spatial features
and the RNN’s capacity for handling sequential
information. Additionally, the authors incorpo-
rated residual connections–originally popularized
in ResNet architectures–to combat issues such as
vanishing gradients and to allow for deeper, more
expressive models. This architectural choice set the
stage for later adaptations, including the adoption of
deeper CNNs like ResNet50 in ECG tasks.

Focusing specifically on image-based ECG
analysis, Luz et al. [11] conducted a notable study
demonstrating the potential of CNNs to classify
arrhythmias using two-dimensional representa-
tions of ECGs. These visual formats, often created
by plotting ECG signals and converting them into
grayscale or RGB images, allow CNNs to identify
spatial patterns and morphological features–such as
QRS complex shape, ST-segment deviations, or P-
wave abnormalities–that may be less evident in raw
signal form. Luz et al.’s results offered some of the
first concrete evidence that CNNs trained on ECG
images could achieve comparable, if not superior,
performance to traditional signal-based methods.
This opened new avenues for using well-established
image classification architectures in cardiology.

Building on this trend, Yildirim [12] introduced
an innovative hybrid approach that integrated discrete
wavelet transforms (DWTs) with CNNs to perform
heartbeat classification. Wavelet transforms were
employed to decompose the ECG signal into multiple
frequency bands, capturing both time-domain and
frequency-domain information. These transformed
signals were then rendered as images and fed into a
CNN for classification. This methodology allowed
for the preservation of both temporal resolution and
spectral features, offering a richer input representa-
tion. The resulting model achieved strong classifica-
tion metrics and further confirmed the adaptability of
CNNs when applied to hybrid signal-image domains.

A major milestone in deep learning-based ECG
interpretation came from the work of Rajpurkar et
al. [13], who developed the “Cardiologist-Level”
model–an advanced CNN trained on a massive da-
taset of over 90,000 single-lead ECG recordings.
The model was capable of detecting over a dozen
types of arrhythmias with diagnostic accuracy that
matched or exceeded that of experienced board-cer-
tified cardiologists. Although their model operated
on 1D signal data, the training methodology, dataset
curation, and emphasis on clinical benchmarking set
a new standard for ECG classification research. Fur-
thermore, the study’s success catalyzed broader in-
terest in adapting similar deep learning frameworks
for ECG images, as researchers sought to replicate
such high performance in settings where only visual
data is available.

These foundational studies–spanning both sig-
nal-based and image-based ECG analysis–provide
strong justification for investigating and compar-
ing the effectiveness of different CNN architec-
tures, particularly VGG16 and ResNet50, in the
context of ECG image classification. Both archi-
tectures have shown promise in various computer
vision domains, yet their comparative strengths
and limitations in the domain of medical imag-
ing, specifically ECGs, remain an active area of
exploration. The current study aims to build upon
this body of work by implementing and evaluating
these two models using a curated dataset of ECG
images, with the ultimate goal of identifying which
architecture offers superior performance for this
clinically significant task.

3. Materials and Methods

3.1 Dataset Overview
The dataset, shown in Figure 1, originates from

the Kaggle repository titled “ECG Images Dataset
of Cardiac Patients” prepared by user EvilSpirit05
in 2023 [14].

Unlike many ECG collections that offer raw
waveform signals, this resource supplies complete
ECG images, each in a consistent resolution and
brightness level, thereby reducing the variability
stemming from differences in scanning equipment
or lighting conditions. These images generally cap-
ture one or more distinct heartbeat cycles, labeled
by professional or automated annotation systems.
Possible labels range from normal sinus rhythm to
various arrhythmic conditions, and each image is
stored in a standardized format (for instance, PNG
or JPEG) at identical pixel dimensions.

32

Comparative analysis of CNN models for detecting cardiovascular diseases

Figure 1 – ECG images dataset

Because of its inherent uniformity, the da-
taset typically eliminates the need for extensive
resizing or brightness normalization. Each im-
age retains a similar visual structure: a standard
grayscale depiction of the ECG trace on a back-
ground with controlled contrast and clarity. The
class balance can vary (some pathologies may be
underrepresented), but the consistent presenta-
tion across images simplifies model training since
convolutional neural networks can more readily
generalize from a uniform set of visual patterns.
Researchers accessing this Kaggle resource thus
begin with a stable baseline, negating common
difficulties such as irregular cropping or widely
differing resolutions.

To ensure robust evaluation of the proposed
models, the process was divided into three clearly
defined stages: training, validation, and testing.
These stages were applied consistently to both
VGG16 and ResNet50.

- Training Stage: 70% of the total ECG image
dataset was used to train the models. During this
phase, weights were optimized using backpropaga-
tion. Data were fed in mini-batches of 16 or 32 im-
ages, resized to 224×224 pixels, and normalized to
a [0, 1] scale. Data augmentation techniques were
optionally applied, though the dataset’s consisten-
cy often rendered them unnecessary. Models were

trained using the Adam or SGD optimizer, with
dropout and batch normalization optionally applied
to prevent overfitting.

- Validation Stage: 15% of the data was re-
served for validation, helping monitor model gen-
eralization in real time. After each epoch, perfor-
mance on this set was evaluated using metrics such
as validation loss, accuracy, and F1-score. Early
stopping was applied if no improvements were ob-
served over a predefined number of epochs (typi-
cally 5), and the best-performing model checkpoint
was saved.

- Testing Stage: The final 15% of the data, not
used during training or validation, was used as a
hold-out test set. After model training and selection,
this unseen subset was used for final performance
evaluation. Confusion matrices and classification
metrics–including accuracy, precision, recall, and
F1-score–were computed to assess true generaliza-
tion performance.

This structured workflow ensured reproducibil-
ity, reduced overfitting risks, and provided objective
measurements of model effectiveness under real-
world constraints.

3.1.1 Data preprocessing
The validation set played a key role in tuning

hyperparameters like learning rate and batch size,
as well as preventing overfitting through early stop-

33

Alfarabi Mazhit, Nazgul Zakariyanova

ping. The test set remained untouched until the fi-
nal performance assessment, ensuring an unbiased
evaluation of the trained models.

Although the Kaggle images were already uni-
form in resolution, an additional check was per-
formed to confirm they matched the 224×224 input
size typically expected by VGG16 and ResNet50.
In cases where the images exceeded this dimension
or had a slightly different aspect ratio, they were
resized (or padded/cropped minimally) to 224×224
pixels. This resizing step guaranteed compatibility
with the input layers of both CNN architectures and
ensured consistent spatial dimensions across the en-
tire dataset.

Because these ECG images already exhibited
consistent brightness, grayscale values, and mini-
mal noise, no further normalization–beyond divid-
ing pixel intensities by 255.0–was required in most
experiments. This step placed each pixel in the [0,1]
range, stabilizing gradient updates during backprop-
agation. During training, runtime checks confirmed
that each batch loaded properly sized 224×224 im-
ages, which were then passed to the convolutional

layers without additional color-space transforma-
tions or extensive augmentations.

3.2 Model Architectures
Deep convolutional neural networks remain

central to many image-classification tasks, includ-
ing medical applications such as ECG analysis. Two
prominent architectures, VGG16 and ResNet50,
were chosen to classify the standardized ECG im-
ages in this project. Each network was originally
developed for large-scale natural image recognition
but can be adapted efficiently to medical datasets,
particularly when those datasets are uniform in reso-
lution and brightness.

3.2.1 VGG16
VGG16, introduced by Simonyan and Zisser-

man in 2015, comprises thirteen convolutional lay-
ers and three fully connected layers, making up six-
teen weight layers in total. Its design is centered on
repeated blocks that stack 3×3 convolutions and use
ReLU activations, with intermittent max pooling to
reduce spatial dimensions. Figure 2 below offers a
schematic of this architecture, illustrating how each
convolution and pooling stage feeds into the next.

Figure 2 – Schematic representation of VGG16.

Although it was originally created for a
1,000-class ImageNet task, the final fully connected
layer in VGG16 can be replaced to match the num-
ber of ECG categories in the Kaggle dataset. Dropout
layers are often introduced within the fully connected
portion to mitigate overfitting, and batch normaliza-
tion may be incorporated if faster convergence or ad-
ditional training stability is needed. Because this data-

set consists of uniform ECG images, VGG16 benefits
from a consistent input dimension of 224×224 pix-
els and does not require elaborate preprocessing for
contrast or brightness adjustments. Transfer learning
from ImageNet-pretrained weights commonly accel-
erates convergence, allowing the network to adapt to
distinct visual signals associated with normal or ar-
rhythmic waveforms [19-20].

34

Comparative analysis of CNN models for detecting cardiovascular diseases

3.2.2 ResNet50
ResNet50, part of the Residual Network family

established by He et al. in 2016, tackles the training
difficulties observed in deep networks through the

use of skip connections. These connections enable
gradients to circumvent some convolutional layers,
reducing the vanishing-gradient problem. Figure 3
presents a schematic representation of ResNet50.

Figure 3 – Schematic representation of VGG16.

This design supports a depth of fifty layers, sub-
stantially more than VGG16, and permits the model
to capture intricate visual features when provided
with adequate data. The final layers of ResNet50,
originally geared toward 1,000 ImageNet classes,
are fine-tuned or replaced to handle the smaller
number of categories in the ECG dataset. Batch nor-
malization is built into the architecture, minimizing
covariate shift and supporting stable training even at
deeper layers. Transfer learning from ImageNet is
also possible, ensuring that learned representations
are reused while the model adapts to the morpho-
logical nuances of heartbeats captured in uniform
ECG imagery.

VGG16’s simpler structure can offer ease of
interpretation, whereas ResNet50, by being deeper,
may learn more nuanced distinctions among wave-
forms. The remainder of this paper examines how
these architectural differences translate into vary-
ing classification accuracies, training dynamics, and
model complexities.

3.3. Hyperparameter Tuning
Hyperparameter tuning played a pivotal role in

optimizing the performance of both VGG16 and
ResNet50 when classifying the Kaggle-based ECG
images, echoing broader findings on the impor-
tance of choosing effective learning rate schedules
for deep learning [15]. This step primarily targeted
batch size and learning rate, as these two parameters
have the most direct impact on model convergence
and generalization.

These particular hyperparameters were selected
because they exert a disproportionately high influ-

ence on the dynamics of training deep neural net-
works. The learning rate determines the magnitude
of weight updates during backpropagation, directly
influencing how quickly and effectively the model
learns [16-18]. An improper learning rate can either
cause the model to diverge (if too high) or lead to
extremely slow convergence (if too low). Mean-
while, batch size affects the frequency and stability
of gradient updates. Smaller batches provide noisy
but potentially more generalizable updates, while
larger batches allow for more efficient computation
and smoother gradients.

Other hyperparameters, such as number of ep-
ochs, activation functions, or optimizer choice, were
held constant in this study. This allowed the investi-
gation to focus on learning rate and batch size, which
are widely recognized in the deep learning commu-
nity as the most impactful and sensitive hyperparam-
eters for tuning convergence and performance.

The choice of batch sizes (16 and 32) was
grounded in balancing computational efficiency and
model performance. A batch size of 16 was selected
initially to provide more frequent weight updates,
which introduces helpful noise during gradient de-
scent and can help the model escape local minima.
However, it also increases training time. A batch
size of 32, in contrast, is well-aligned with the mem-
ory capacity of modern GPUs and allows for stable
convergence without overloading system resources.
Our experiments showed that a batch size of 32
consistently yielded higher accuracy, likely due to
smoother gradients and more consistent loss mini-
mization over mini-batches.

35

Alfarabi Mazhit, Nazgul Zakariyanova

The learning rates (0.001, 0.0001, 0.00001)
were chosen to represent a descending range from
fast to slow convergence. A rate of 0.001 is standard
in many CNN setups and was expected to give rapid
initial convergence. However, deeper networks like
ResNet50 showed instability at this rate. The mid-
level rate of 0.0001 provided the best trade-off: suf-
ficiently fast learning while maintaining stability
and avoiding overshooting minima. The smallest
rate, 0.00001, ensured extremely gradual updates–
useful for fine-tuning or avoiding divergence–but at
the cost of longer training times.

This tuning process followed a grid search
approach, a systematic method for exhaustively
searching through a predefined subset of hyper-
parameters. Specifically, the combinations of two
batch sizes (16 and 32) and three learning rates
(0.001, 0.0001, 0.00001) were evaluated, forming a
total of six configurations. Each configuration was
trained independently on the same training and vali-
dation splits to ensure consistency and fairness in
comparison. For each run, metrics such as accuracy,
precision, and F1-score were monitored to assess
performance.

Grid search was chosen over random search or
Bayesian optimization due to its simplicity and com-
plete coverage of the small parameter space. Since
the computational cost was manageable–thanks to
the relatively small dataset size and the use of trans-
fer learning–grid search offered a practical balance
between thoroughness and efficiency. Ultimately, it
enabled the precise identification of optimal config-
urations without introducing additional tuning com-
plexity. For each pair, performance metrics were
logged on both validation and test sets. As summa-
rized in the Results section, VGG16 with batch size
32 and learning rate 0.0001 or 0.00001 performed
best, reaching 98% accuracy. These results indicate
that even on relatively small, clean datasets, proper
tuning is vital to achieving optimal performance.

3.4. Training Procedure and Implementation
Details

Following hyperparameter tuning, the chosen
configurations for learning rate and batch size were
applied consistently to VGG16 and ResNet50 across
multiple training runs. Training was conducted on
a Python 3.9 environment, primarily using Tensor-
Flow (Keras) or PyTorch. GPU acceleration, often
provided by NVIDIA RTX-series devices, allowed
mini-batch gradient updates at a reasonable speed
even for deeper architectures like ResNet50. Each
epoch processed all images within the training set,
with the optimizer–either Adam or stochastic gradi-

ent descent with momentum–updating weights via
backpropagation. Dropout and batch normalization
were introduced in certain experiments to combat
overfitting or stabilize activation distributions.

An early stopping strategy again leveraged vali-
dation metrics to determine when training should
halt. Once improvements in validation accuracy or
F1-score plateaued for several consecutive epochs,
the process ended to conserve resources and avoid
overfitting. A final model checkpoint, representing
the highest validation performance, was reserved
for the test evaluation phase. Because the ECG im-
ages all shared a 224×224 resolution and consistent
brightness, runtime preprocessing remained mini-
mal beyond ensuring that each batch loaded cor-
rectly.

A brief web application prototype was devel-
oped to illustrate how these trained models might
function in a clinical or research environment. The
backend, built with Django REST Framework, ac-
cepted uploaded ECG images and performed classi-
fication with either VGG16 or ResNet50, depending
on which model was selected as the top performer.
A React-based frontend allowed users to upload im-
age files through a concise interface, and the server
responded with class predictions in real time. The
screenshot below (Figure 4) shows an example of
the page where users can upload their ECG images
for classification.

In a full production setting, security measures
such as HTTPS, authentication, and audit logging
would be implemented to satisfy data protection
requirements [21-22]. Containerization solutions
could also be adopted to facilitate scalability across
multiple clinical sites or research laboratories. Al-
though this prototype was not configured for large-
scale deployments, it demonstrated the feasibility of
integrating a CNN-based ECG classification system
into a practical application accessible to end us-
ers. By automating the image upload and inference
processes, the tool potentially reduces the need for
specialized technical expertise while offering near-
instant diagnostic support.

36

Comparative analysis of CNN models for detecting cardiovascular diseases

Figure 4 – Sample upload interface for the ECG classification web application.

3.5. Technical Implementation Details
The training and evaluation of the models were

conducted in a high-performance computing envi-
ronment equipped with an NVIDIA Tesla T4 GPU
(15 GB VRAM), running CUDA 12.4 and driver
version 550.54.15. The experiments were imple-
mented in Python 3.11.12 using TensorFlow 2.18.0
as the primary deep learning framework. More de-
tails shown on Figure 5.

All models were trained using GPU accelera-
tion, with the TensorFlow backend configured to
automatically allocate GPU memory as needed.
During training, typical memory usage ranged from

8.3 GB to 11.5 GB, depending on the model size
and batch configuration.

Both VGG16 and ResNet50 architectures were
initialized using ImageNet pre-trained weights and
fine-tuned on the ECG image dataset. Model train-
ing was performed using a batch size of 32, a learn-
ing rate of 0.0001, and 30 epochs per run. The Adam
optimizer was employed with categorical cross-en-
tropy as the loss function.

Each epoch took approximately 60–80 seconds,
depending on model complexity. Each epoch train-
ing time shown on Figure 6 for VGG16 and Figure
7 for ResNet50.

Figure 5 – Technical parameters of computer.

37

Alfarabi Mazhit, Nazgul Zakariyanova

Figure 6 – VGG16 model training time.

Figure 7 – ResNet50 model training time.

In addition, early stopping was implemented to
prevent overfitting, and training logs (loss, accu-
racy, and validation metrics) were recorded for all
runs. Post-training evaluation was conducted on a
separate test set using confusion matrices and F1-
score analysis.

4. Results

Initial experiments compared VGG16 and
ResNet50 under identical training conditions: epoch

count set to 20, a batch size of 16, and a learning rate
of 0.0001. Under these parameters, VGG16 reached
a classification accuracy of 92%, while ResNet50
attained 81%. Figure 8 presents the confusion ma-
trix for VGG16 in this initial run, illustrating that
misclassifications were generally concentrated in
a small subset of classes. Figure 9 shows the cor-
responding confusion matrix for ResNet50, where
off-diagonal entries are more pronounced, indicat-
ing that certain pathological and normal ECG cat-
egories were not as distinctly separated.

38

Comparative analysis of CNN models for detecting cardiovascular diseases

Figure 8 – Confusion matrix of VGG16 model.

Figure 9 – Confusion matrix of ResNet50 model.

Observing that VGG16 outperformed
ResNet50 in these initial trials, subsequent at-
tention turned exclusively to VGG16 for a
deeper exploration of hyperparameters. The
new tests all remained at 20 epochs but varied
batch size (16 or 32) and learning rate (0.001,

0.0001, 0.00001). Higher batch sizes introduced
fewer but more stable gradient updates each ep-
och, while lower learning rates tended to refine
weights more gradually. Table 1 below summa-
rizes the final accuracy values across these pa-
rameter combinations:

39

Alfarabi Mazhit, Nazgul Zakariyanova

Table 1 – Evaluation metrics of VGG16 under different hyperparameter settings.

Batch size Learning rate Accuracy Recall Precision F1-score

16
0.001 0.97 0.9675 0.97 0.97
0.0001 0.92 0.9275 0.9175 0.915
0.00001 0.93 0.9225 0.925 0.925

32
0.001 0.96 0.9475 0.96 0.9525
0.0001 0.98 0.9825 0.98 0.9825
0.00001 0.98 0.9825 0.98 0.9825

Accuracy notably improved under several of
these setups. When the batch size was 32 and the
learning rate set to either 0.0001 or 0.00001, the
model achieved 98%, marking the highest classifi-
cation success observed in this study. Figure 10 pro-
vides a composite display of confusion matrices for
each hyperparameter variation tested with VGG16.

The diagrams illustrate how higher accuracies cor-
responded to fewer off-diagonal errors, particularly
in ECG classes that presented subtle morphological
distinctions. All experiments consistently ran for 20
epochs, without early stopping or reduction in the
number of iterations, ensuring a uniform basis for
comparison across different parameter settings.

Figure 10 – Confusion matrices of models with tuned hyperparameters.

5. Discussion

The findings of this study demonstrate a signifi-
cant difference in performance between two promi-
nent convolutional neural network (CNN) architec-

tures, VGG16 and ResNet50, when applied to the
classification of standardized ECG images. Under
identical training conditions, VGG16 consistently
outperformed ResNet50, achieving a peak accuracy
of 98% under optimal hyperparameter configura-

40

Comparative analysis of CNN models for detecting cardiovascular diseases

tions. This superior performance can be attributed
to VGG16’s simpler architecture, which may offer
better generalization capabilities on relatively small
or uniform datasets, as is the case with the ECG im-
age dataset used in this research.

ResNet50, while theoretically more power-
ful due to its deeper architecture and residual
connections, may be more prone to overfitting
or underfitting when applied to datasets lacking
diversity or scale. The confusion matrices illus-
trated in Figure 9 show that ResNet50 produced
more misclassifications compared to VGG16,
particularly among arrhythmic classes with
subtle morphological differences. The reduced
performance highlights the necessity for either
more extensive data augmentation, regulariza-
tion, or dataset scaling when deploying deeper
models like ResNet50.

Hyperparameter tuning played a pivotal role
in optimizing the performance of the models. The
results suggest that a batch size of 32 and learn-
ing rates of 0.0001 or 0.00001 provide the best
outcomes for VGG16, confirming that stability in
gradient updates and moderate learning steps lead
to superior convergence. Figure 10 supports this ob-
servation, showing clearer separation of classes and
fewer off-diagonal entries in the confusion matrices
for well-tuned configurations.

5.1. Training and Validation Curves
ResNet50: The training and validation curves for

ResNet50 are illustrated in Figure 11 (accuracy and
loss). As shown, the model demonstrates a gradual
increase in training accuracy over 30 epochs, reach-
ing above 80%. However, the validation accuracy
is highly variable, with noticeable oscillations be-
tween epochs. This instability suggests sensitivity to
specific mini-batches and possible overfitting.

In terms of loss, both training and validation
loss exhibit a steady downward trend, starting from
approximately 1.4 and converging toward 0.55. De-
spite this improvement, the final loss values remain
higher than those of VGG16, indicating less effec-
tive optimization.

VGG16: Figure 12 (accuracy and loss) present
the training dynamics for VGG16. The accuracy
curve shows rapid convergence within the first 10
epochs, with both training and validation accuracy
stabilizing above 95%. The close tracking of valida-
tion accuracy to training accuracy indicates excel-
lent generalization.

The corresponding loss graph further supports
this conclusion. Both curves descend smoothly,
converging near 0.2 by the end of training. Mini-
mal divergence between the training and validation
losses demonstrates that the model is not overfitting
and is learning robust representations.

Figure 11 – Accuracy and loss curve of ResNet50.

41

Alfarabi Mazhit, Nazgul Zakariyanova

Figure 12 – Accuracy and loss curve of VGG16.

5.2. Limitations and Interpretability
This study has several limitations that must be

addressed in future work. First, the dataset is de-
rived from a single publicly available source and
may not capture the full spectrum of ECG variation
found in clinical practice. This limits generalizabil-
ity across different patient populations or recording
devices. Second, only two CNN architectures were
explored. Future research should include a broader
range of models, including lightweight architectures
for edge deployment and hybrid CNN-RNN frame-
works for temporal data.

Additionally, this study did not incorporate in-
terpretability tools. The inclusion of explainable AI
(XAI) techniques, such as Grad-CAM, would help
clinicians understand which parts of the ECG con-
tributed most to the model’s decisions, thereby en-
hancing trust and facilitating adoption.

One of the key limitations of the current study
is the lack of assessment of model robustness to
real-world distortions frequently encountered in
ECG acquisition. Factors such as poor electrode
contact, patient motion, or electrical interference
can introduce noise and artifacts that alter ECG
morphology. As the dataset used in this study
consists of clean, high-resolution ECG images,
the performance of the trained models under
noisy or artifact-laden conditions remains un-
tested. Future work should incorporate synthetic
noise injection, real-world distorted samples, or
domain adaptation techniques to evaluate and

improve the resilience of CNN models to such
perturbations.

5.3. Clinical Applicability
The developed web service prototype demon-

strates the feasibility of deploying deep learning
models for real-time ECG classification in clinical
or remote settings. Potential use cases include:

- Rural clinics lacking cardiologists, where
healthcare workers can obtain preliminary diagno-
ses.

- Emergency departments needing quick triage
of incoming ECGs.

- Telemedicine platforms for continuous remote
monitoring.

- Educational settings for training medical stu-
dents and technicians.

In real-world deployment, enhancements such
as HTTPS encryption, role-based access, user au-
thentication, and compliance with data protection
regulations (e.g., GDPR, HIPAA) will be essential.
Integration with hospital information systems and
mobile devices can further extend accessibility.

5.4. Statistical Analysis of Multiple Runs
To evaluate the robustness and stability of the

proposed VGG16 model, the training and testing
pipeline was executed over 5 independent runs us-
ing identical hyperparameter settings (batch size =
32, learning rate = 0.0001, epochs = 30). This ap-
proach accounts for stochastic variability introduced
by random weight initialization, data shuffling, and
mini-batch selection.

42

Comparative analysis of CNN models for detecting cardiovascular diseases

For each run, performance was measured on the
hold-out test set using four primary metrics: accu-
racy, precision, recall, and F1-score. The mean and
standard deviation for each metric are summarized
below:

- Accuracy: 0.9758 ± 0.0017
- Precision: 0.9772 ± 0.0021
- Recall: 0.9738 ± 0.0020
- F1-score: 0.9754 ± 0.0021
The narrow standard deviations across all met-

rics indicate a high degree of consistency in model

performance across different runs. This consistency
strengthens the reliability of the VGG16 architec-
ture in classifying ECG images under the current
dataset and training configuration.

Figure 13 presents a bar plot of the average
scores for each metric, accompanied by error bars
representing ±1 standard deviation. The consistent-
ly high scores and low variance further support the
claim that the model generalizes well across the da-
taset and is not highly sensitive to random initializa-
tion or data splits.

Figure 13 – Performance metrics

5.5. Architectural Improvements and Future Ex-
tensions

To further enhance the classification perfor-
mance and generalization capabilities of the models,
several architectural improvements and advanced
strategies may be considered in future research:

- Attention mechanisms such as Squeeze-and-
Excitation (SE) blocks or Convolutional Block At-
tention Modules (CBAM) can be integrated into
baseline architectures like VGG16 or ResNet50.
These modules help the network focus on diagnosti-
cally relevant spatial features within ECG images,
potentially improving sensitivity to subtle morpho-
logical differences.

- Model ensembling could also be explored,
where predictions from multiple models (e.g.,

VGG16, ResNet50, and even lightweight architec-
tures) are combined using soft voting or stacking.
Alternatively, extracted features from both CNNs
could be aggregated and passed into a meta-classi-
fier such as XGBoost for final prediction. This ap-
proach may increase robustness and accuracy.

- Incorporating lightweight or next-generation
architectures, such as MobileNetV2 or EfficientNet,
may reduce computational load while maintaining
high accuracy. These models are especially relevant
for edge deployment scenarios, such as portable
ECG devices or real-time mobile diagnostics.

Exploring these directions can help optimize
both predictive power and practical deployment,
thereby increasing the clinical relevance of ECG
image classification models.

43

Alfarabi Mazhit, Nazgul Zakariyanova

6. Conclusions

The primary aim of this research was to iden-
tify the most effective deep learning approach for
classifying standardized ECG images. The data-
set originated from a Kaggle repository, featuring
scans in uniform brightness and resolution. The use
of VGG16 and ResNet50 architectures allowed for
a comparative analysis under consistent training
conditions. From the initial tests, VGG16 demon-
strated higher classification performance relative to
ResNet50, prompting further hyperparameter tuning
that confirmed VGG16’s suitability for ECG clas-
sification in this setting.

The process involved a stable training routine of
20 epochs, with systematic variations in batch size
and learning rate. The results indicated that hyper-
parameter adjustments–particularly batch size of 32
and learning rate of 0.0001 or 0.00001–could sub-
stantially elevate VGG16’s accuracy, reaching up to
98%. Confusion matrices revealed that even subtle
morphological distinctions in ECG waveforms were
correctly recognized when the model was appropri-
ately tuned.

Implementing this workflow involved minimal
data preprocessing efforts, given the dataset’s inher-
ent uniformity, yet highlighted the critical influence
of hyperparameters on convergence and generaliza-
tion. A web-based prototype was subsequently de-
veloped, integrating the trained model into a Django

REST and React framework, thereby demonstrating
the feasibility of near-real-time inference.

Overall, these findings illustrate how a well-
chosen architecture, combined with measured ex-
perimentation on learning rate and batch size, can
unlock high levels of accuracy in medical image
classification. Future work could investigate more
extensive data augmentation, integrate interpret-
ability modules, or broaden the dataset scope to in-
clude additional arrhythmias or clinical scenarios.
The encouraging performance results also suggest
the viability of deploying such models in clinical
workflows, particularly in settings that benefit from
consistent ECG capture protocols and reliable clas-
sification.

Author Contributions

Conceptualization, A. M. and N. Z.; Methodol-
ogy, A. M.; Software, A. M. and N. Z.; Validation,
A. M.; Formal Analysis, A. M.; Investigation, A. M.
and N. Z.; Resources, A. M.; Data Curation, N. Z.;
Writing – Original Draft Preparation, A. M. and N.
Z.; Writing – Review & Editing, A. M. and N. Z.;
Visualization, A. M.; Supervision, A. M. and N. Z.;
Project Administration, A. M. and N. Z.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. World Health Organization. (2023). Cardiovascular diseases (CVDs). Retrieved from https://www.who.int/news-room/
fact-sheets/detail/cardiovascular-diseases-(cvds)

2. Schots, B. B., Pizarro, C. S., Arends, B. K., Oerlemans, M. I., Ahmetagić, D., van der Harst, P., & van Es, R. (2025). Deep
learning for electrocardiogram interpretation: Bench to bedside. European Journal of Clinical Investigation, 55, e70002.

3. Mienye, I. D., & Swart, T. G. (2024). A comprehensive review of deep learning: Architectures, recent advances, and ap-
plications. Information, 15(12), 755.

4. Thakur, G. K., Thakur, A., Kulkarni, S., Khan, N., & Khan, S. (2024). Deep learning approaches for medical image analysis
and diagnosis. Cureus, 16(5).

5. Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. In Proceed-
ings of the International Conference on Learning Representations (ICLR).

6. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 770–778).

7. Li, S., Zhao, P., Zhang, H., Sun, X., Wu, H., Jiao, D., ... & Wang, D. (2024). Surge phenomenon in optimal learning rate
and batch size scaling. arXiv preprint arXiv:2405.14578.

8. Gunning, D. (2017). Explainable Artificial Intelligence (XAI). Defense Advanced Research Projects Agency (DARPA),
Program Information Release.

9. Acharya, U. R., Fujita, H., Sudarshan, V. K., Oh, S. L., Adam, M., Koh, J. E., ... & San Tan, R. (2016). Automated detec-
tion and localization of myocardial infarction using electrocardiogram: a comparative study of different leads. Knowledge-Based
Systems, 99, 146-156.

10. Kachuee, M., Fazeli, S., & Sarrafzadeh, M. (2018, June). Ecg heartbeat classification: A deep transferable representation.
In 2018 IEEE international conference on healthcare informatics (ICHI) (pp. 443-444). IEEE.

44

Comparative analysis of CNN models for detecting cardiovascular diseases

11. Luz, E. J. D. S., Schwartz, W. R., Cámara-Chávez, G., & Menotti, D. (2016). ECG-based heartbeat classification for ar-
rhythmia detection: A survey. Computer methods and programs in biomedicine, 127, 144-164.

12. Yildirim, Ö. (2018). A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classifi-
cation. Computers in biology and medicine, 96, 189-202.

13. Rajpurkar, P., Hannun, A. Y., Haghpanahi, M., Bourn, C., & Ng, A. Y. (2017). Cardiologist-level arrhythmia detection
with convolutional neural networks. arXiv preprint arXiv:1707.01836.

14. https://www.kaggle.com/datasets/evilspirit05/ecg-analysis/data
15. Smith, L. N. (2017, March). Cyclical learning rates for training neural networks. In 2017 IEEE winter conference on ap-

plications of computer vision (WACV) (pp. 464-472). IEEE.
16. Liao, L., Li, H., Shang, W., & Ma, L. (2022). An empirical study of the impact of hyperparameter tuning and model op-

timization on the performance properties of deep neural networks. ACM Transactions on Software Engineering and Methodology
(TOSEM), 31(3), 1-40.

17. Nematzadeh, S., Kiani, F., Torkamanian-Afshar, M., & Aydin, N. (2022). Tuning hyperparameters of machine learning al-
gorithms and deep neural networks using metaheuristics: A bioinformatics study on biomedical and biological cases. Computational
biology and chemistry, 97, 107619.

18. Bartz, E., Bartz-Beielstein, T., Zaefferer, M., & Mersmann, O. (2023). Hyperparameter tuning for machine and deep learn-
ing with R: A practical guide (p. 323). Springer Nature.

19. Fang, A., Kornblith, S., & Schmidt, L. (2023). Does progress on ImageNet transfer to real-world datasets?. Advances in
Neural Information Processing Systems, 36, 25050-25080.

20. Kim, H. E., Cosa-Linan, A., Santhanam, N., Jannesari, M., Maros, M. E., & Ganslandt, T. (2022). Transfer learning for
medical image classification: a literature review. BMC medical imaging, 22(1), 69.

21. Pant, P., Rajawat, A. S., Goyal, S. B., Bedi, P., Verma, C., Raboaca, M. S., & Enescu, F. M. (2022). Authentication and
authorization in modern web apps for data security using Nodejs and role of dark web. Procedia Computer Science, 215, 781-790.

22. de Almeida, M. G., & Canedo, E. D. (2022). Authentication and authorization in microservices architecture: A systematic
literature review. Applied Sciences, 12(6), 3023.

Information about authors
Alfarabi Mazhit, Second-year master’s student in Software Engineering at Kazakh-British Technical University (Almaty, Ka-

zakhstan, a-mazhit@mail.ru), ORCID: 0009-0003-7308-2131
Nazgul Zakariyanova, Senior Lecturer at Al-Farabi Kazakh National University (Almaty, Kazakhstan, znazb11@gmail.com),

ORCID: 0009-0000-0842-5394

Submission received: 22 April, 2025.
Revised: 27 May, 2025.

Accepted: 27 May, 2025.

