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SPATIOTEMPORAL ASSESSMENT OF SOIL SALINITY  
IN IRRIGATED AGRICULTURAL LANDS  

OF KAZAKHSTAN USING REMOTE SENSING

Abstract. Soil salinization poses a significant threat to agricultural productivity and environmental 
sustainability, particularly in arid and semi-arid regions. This study presents a comprehensive spatiotem-
poral analysis of soil salinity dynamics in irrigated lands of Alakol District, Zhetisu Region, Kazakhstan, 
using multi-temporal Sentinel-2 satellite imagery and the Normalized Difference Salinity Index (NDSI). 
The analysis covered the 2024 growing season, from March to November, with one cloud-free image se-
lected for each month. NDSI values were calculated monthly and classified into four salinity categories: 
non-saline, slightly saline, moderately saline, and highly saline. Field sampling at 31 locations provided 
electrical conductivity (EC) data for validation, enabling comparison between surface reflectance-based 
salinity estimates and ground measurements. The results demonstrated pronounced seasonal trends: 
NDSI values were lowest in spring due to leaching by precipitation and early irrigation, gradually in-
creasing through summer as evaporation concentrated salts at the surface, and fluctuating in autumn 
depending on rainfall and drainage conditions. Spatially, fields situated in topographic depressions or 
near Lake Alakol exhibited the highest salinity levels, whereas upland areas remained relatively unaf-
fected. Notably, no fields exceeded the moderate salinity threshold, indicating that while salinization 
is present, it remains in early stages. The NDSI approach proved effective for surface salinity detection, 
capturing both temporal fluctuations and spatial heterogeneity. These findings underscore the utility of 
remote sensing for operational salinity monitoring and highlight the importance of continuous observa-
tion to inform timely land management interventions. This study offers actionable insights for sustain-
able agriculture, particularly in tailoring irrigation and drainage strategies to mitigate salinity risks across 
vulnerable farmlands in Central Asia.

Keywords: land degradation, soil salinity, electrical conductivity, remote sensing, satellite images, 
normalized difference salinity index, spatiotemporal dynamics.

IRSTI 20.23.27      https://doi.org/10.26577/jpcsit2025332 

Aisulu Ataniyazova 1,2* , Timur Merembayev 2  
1Al-Farabi Kazakh National University, Almaty, Kazakhstan 

2Institute of Information and Computational Technologies, Almaty, Kazakhstan 
*e-mail: aisulu.ataniyazova@gmail.com  

Spatiotemporal assessment of soil salinity in irrigated agricultural lands of Kazakhstan 
using remote sensing 

Abstract. Soil salinization poses a significant threat to agricultural productivity and environmental sustainability, 
particularly in arid and semi-arid regions. This study presents a comprehensive spatiotemporal analysis of soil salinity 
dynamics in irrigated lands of Alakol District, Zhetisu Region, Kazakhstan, using multi-temporal Sentinel-2 satellite 
imagery and the Normalized Difference Salinity Index (NDSI). The analysis covered the 2024 growing season, from 
March to November, with one cloud-free image selected for each month. NDSI values were calculated monthly and 
classified into four salinity categories: non-saline, slightly saline, moderately saline, and highly saline. Field sampling 
at 31 locations provided electrical conductivity (EC) data for validation, enabling comparison between surface 
reflectance-based salinity estimates and ground measurements. The results demonstrated pronounced seasonal trends: 
NDSI values were lowest in spring due to leaching by precipitation and early irrigation, gradually increasing through 
summer as evaporation concentrated salts at the surface, and fluctuating in autumn depending on rainfall and drainage 
conditions. Spatially, fields situated in topographic depressions or near Lake Alakol exhibited the highest salinity levels, 
whereas upland areas remained relatively unaffected. Notably, no fields exceeded the moderate salinity threshold, 
indicating that while salinization is present, it remains in early stages. The NDSI approach proved effective for surface 
salinity detection, capturing both temporal fluctuations and spatial heterogeneity. These findings underscore the utility 
of remote sensing for operational salinity monitoring and highlight the importance of continuous observation to inform 
timely land management interventions. This study offers actionable insights for sustainable agriculture, particularly in 
tailoring irrigation and drainage strategies to mitigate salinity risks across vulnerable farmlands in Central Asia. 

Keywords: land degradation, soil salinity, electrical conductivity, remote sensing, satellite images, normalized 
difference salinity index, spatiotemporal dynamics. 

 
 
 
 
 
 
 
 
1. Introduction 
 
Soil salinization is a severe form of land 

degradation that threatens agricultural productivity 
and ecosystem health worldwide. Traditional 
methods of mapping soil salinity rely on extensive 
ground sampling and laboratory analysis, which are 
labor-intensive, costly, and impractical for large 
areas. In recent years, remote sensing satellites 
coupled with machine learning have emerged as 
efficient tools for assessing and mapping soil 
salinity across wide regions [1, 2]. Optical sensors 
(Landsat, Sentinel-2) and radar sensors (Sentinel-1) 
can detect spectral and backscatter signatures related 
to surface salt content, while ML algorithms can 
learn complex relationships between those 
signatures and ground-measured salinity. 

Multi-spectral optical imagery and radar 
imagery are widely used to detect salinity-induced 

signals on the soil surface. Salt-affected soils often 
exhibit characteristic spectral signatures, such as 
high reflectance in visible and near-infrared bands 
or distinctive vegetation stress signals. Many studies 
derive spectral indices to enhance salinity detection. 
For example, researchers in the Great Hungarian 
Plain [3] (Eastern Europe) used Landsat 8 to 
compute vegetation and salinity indices (along with 
principal components and land surface temperature) 
as inputs to regression models. In arid regions of 
Abu Dhabi, indices like NDVI (Normalized 
Difference Vegetation Index) and BSI (Bare Soil 
Index) showed moderate correlation with soil 
electrical conductivity, and their combination 
improved salinity prediction models [4]. Such 
indices capture reduced vegetation vigor or exposed 
bright soils typical of saline areas. However, optical 
methods have limits: heavy vegetation can mask soil 
signals, and beyond the top ~5 cm of soil, optical 

https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.26577/jpcsit2025332
https://orcid.org/0000-0003-1122-6614
https://orcid.org/0000-0001-8185-235X
mailto:aisulu.ataniyazova@gmail.com


14

Spatiotemporal assessment of soil salinity in irrigated agricultural lands of Kazakhstan using remote sensing

reflectance is less sensitive to salt content [5]. To 
address this, some studies incorporate thermal 
infrared data (sensitive to soil moisture and salinity 
effects) or hyperspectral imagery for more 
diagnostic spectral features, though these data are 
less commonly available. 

Central Asia has been a focal point for salinity 
research due to intensive irrigation and 
desertification. Mukhamediev et al. mapped soil 
salinity across Turkestan, Almaty, Zhambyl, and 
Kyzylorda using a fusion of Sentinel-1 SAR and 
Landsat optical data, combined with machine 
learning models [6]. Their approach – employing 
boosted regression trees (XGBoost/LightGBM) 
outperformed models using optical data alone, 
showing better agreement with ground EC 
measurements. Using explainable ML, they also 
optimized feature selection without reducing 
accuracy. Notably, their regional model 
outperformed a global salinity model, highlighting 
the importance of local calibration. Merembayev et 
al. studied salinity in arid irrigated farms using high-
resolution radar textures and ML [7]. They 
highlighted strong spatial heterogeneity in salinity 
due to variable soil and irrigation conditions, which 
complicates mapping efforts. Their results showed 
that careful data partitioning and maintaining 
representative value distributions were key for 
model performance. LightGBM and Ridge 
regression achieved the best results (R² ~0.68). The 
authors suggest future work should explore deep 
learning and physics-based models to enhance 
accuracy. 

Researchers in [8] assessed soil salinity changes 
under climate change in the Khorezm region of 
Uzbekistan – an area with extensive irrigation. Their 
analysis noted that over the last 40 years, soil 
salinity has increased due to rising temperatures and 
poor drainage, and using saline groundwater for 
irrigation has exacerbated secondary salinization. 
By integrating remote sensing with climate data, 
they linked periods of warming and reduced river 
inflows to spikes in soil salt levels, predicting that 
climate change will continue to aggravate salinity 
unless irrigation management improves. A broader 
scale analysis by [9] provides a striking forecast for 
Central Asia. Using an automated ML framework to 
analyze drivers of salinity across Central Asia and 
neighboring Xinjiang (western China), they found 
that meteorological factors (aridity, temperature) 
exert the strongest influence on soil salt content, 
often interacting with landscape position (e.g. low-

lying basins). Their model projected that with 
extreme climate warming scenarios, average soil 
salt concentrations could rise by about +21% in 
Central Asia by 2100, and as much as +65% in 
Xinjiang. Areas around irrigation water sources and 
topographic low points are at highest risk of salinity 
escalation. This study’s methodology – using ML to 
parse out interaction effects between climate, 
topography, and human factors – is an innovative 
approach to understand spatio-temporal dynamics. It 
provides a quantitative glimpse into the future, 
highlighting that without intervention, Central 
Asia’s salinization will intensify under climate 
change. 

A major advantage of satellite-based monitoring 
is the ability to track salinity changes over time – 
capturing both seasonal fluctuations and long-term 
trends. Historically, most remote sensing salinity 
studies focused on mapping spatial patterns at a 
single time, often neglecting the temporal dimension 
[10]. Recent work is beginning to fill this gap by 
leveraging multi-temporal image series and time-
series analysis. In irrigated areas, soil salinity 
fluctuates seasonally–often rising during dry periods 
due to evaporation and decreasing after rain or 
irrigation. Dense time-series from Sentinel-2 have 
been used to detect such patterns. For instance, [11] 
identified higher salinity in the dry season in China's 
Ebinur Lake wetland using RF models. Similarly, a 
study in the Werigan–Kuqa Oasis [12] found 
salinity shifts linked to precipitation variability, with 
expansion during droughts and retraction in wetter 
years. Multi-date imagery reduces noise and 
improves model accuracy. Duan et al. proposed a 
“combined-temporal” approach using multiple 
Sentinel-2 images around the sampling date [13]. 
This stabilized spectral signatures and improved 
model performance (R² = 0.72, RMSE ≈ 0.87 dS/m). 
However, salinity signals are affected by vegetation 
phenology and cropping cycles, necessitating 
integration with seasonal land cover and crop type 
data. 

Comparing salinity maps over years reveals 
degradation or improvement patterns. In Zaghouan, 
Tunisia, salinized areas expanded from 2000 to 
2023, linked to reduced rainfall and land use change 
(r ≈ –0.85 with precipitation), highlighting climate 
change as a key driver [13]. In contrast, the Xinjiang 
Oasis saw a salinity decline over 25 years, with non-
salinized land increasing and severe salinity 
retreating due to improved irrigation and drainage. 
Evidence from Iran’s Golestan Province also 



15

Aisulu Ataniyazova, Timur Merembayev

showed salinity reduction after drainage system 
installation, confirmed via satellite data. Meanwhile, 
in Central Asia’s Kashgar region [14], time-series 
analyses revealed worsening salinity due to 
reclamation without drainage–mirroring issues in 
the Aral Sea basin. 

A few studies directly compared different 
remote sensing approaches for mapping soil salinity 
under various environmental conditions. For 
instance, [15] compared Sentinel-2 vs Landsat-8 
imagery for salinity mapping in a Mediterranean 
site, finding Sentinel-2’s higher resolution gave it an 
edge in detecting fine-scale salinity patches. 
Conversely, another study in a Chinese wetland 
found Landsat-8’s inclusion of a thermal band 
(absent in Sentinel-2) made it slightly superior for 
salinity estimation using a cubist model [16]. Such 
comparisons suggest that the “best” satellite 
platform may vary with context – Sentinel-2 excels 
with spatial detail and revisit frequency, whereas 
Landsat’s thermal data can help in humid areas 
where evapotranspiration differences are key. In 
practice, many studies now use both (taking 
advantage of the combined 5-day revisit of Sentinel-
2 and Landsat-8). On the ML side, comparisons like 
those by [17] in GEE have provided valuable 
guidance – they noted that while a CART model 
achieved the lowest error on training data, it tended 
to overfit extreme salinity, whereas RF provided 
more reliable generalization across landscapes. This 
hints that for operational mapping, a slightly less 
“accurate” but more stable model (RF) may be 
preferable to avoid speckled or noisy salinity  
maps.  

Reliable ML modeling hinges on quality ground 
truth data, yet in many regions soil salinity sampling 
is sparse and infrequent due to the costs and effort 
required [18]. Small sample sizes can lead to 
unstable models. Most remote sensing methods 
primarily sense surface salt. This is problematic 
because harmful salinity can build up below the 
topsoil and escape detection until it surfaces [19, 
20]. There is consensus that passive optical methods 
alone cannot fully capture subsoil salinity – thus, 
research is heading toward combining satellite data 
with geophysical surveys (EM induction, resistivity) 
or soil hydraulic models to infer salt distribution in 

the profile. Thus, despite existing advances, using 
remote sensing or machine learning in isolation 
often faces limitations – such as sensitivity to 
seasonal variability, limited model transferability, or 
instability in interpreting temporal signals. The 
present study is aimed at assessing the spatial and 
temporal dynamics of soil salinity within the 
selected territory in the period from March to 
November. Based on the interpretation of satellite 
images and data processing in the GIS environment, 
an analysis of salinity changes has been performed, 
which allows not only to identify seasonal trends, 
but also to justify the need for sustainable 
approaches to land management.  

 
2. Materials and methods 
 
The study was conducted in the agricultural 

lands of Alakol District, Zhetisu region, 
Kazakhstan, encompassing a semi-arid continental 
environment. The area lies approximately between 
46°N and 81°E (near Lake Alakol’s basin), 
characterized by hot, dry summers and cold winters
. Annual precipitation is low (≈150–280 mm), with 
most rain falling in spring (April–May) and late 
autumn. This climate and intensive irrigation 
practices make the region prone to soil salinization, 
as evaporation often exceeds rainfall, leading to salt 
accumulation at the surface. Thirty-one sampling 
sites were selected across the district’s farmlands to 
capture spatial variability. At each site, we collected 
surface soil samples and measured electrical 
conductivity in a 1:5 soil-water extract as a ground 
truth indicator of salinity. The EC values ranged 
from 0.07 (non-saline) up to 1.4 (highly saline) in 
the 1:5 extract. We also recorded terrain attributes at 
each site: elevation (from a DEM), local slope, and 
ambient surface temperature. Elevations spanned 
~379–495 m above sea level (lower toward the lake 
plain, higher in uplands), and slopes were gentle 
(mostly <1° incline). Notably, the lowest-lying 
fields tended to have higher measured salinity, 
consistent with salt accumulation in topographic 
depressions. Table 1 summarizes the field data, 
including coordinates, electrical conductivity (EC), 
elevation, surface temperature, and slope values for 
each of the 31 sampling sites. 
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Table 1 – Field data 
 

Field № X Y EC (1:5), 
dS/m DEM, m Surface 

temp., °C Slope 

ALK1 81.263687 46.013337 0.16 387 42.35 0.8863131403923035 
ALK2 81.263322 46.013021 0.2 387 42.35 0.8863131403923035 
ALK3 81.262991 46.012058 0.44 387 42.35 0.8863131403923035 
ALK4 81.252822 46.014737 0.15 386 42.78 0.4236890375614166 
ALK5 81.252683 46.014185 0.48 386 42.78 0.4236890375614166 
ALK6 81.258905 46.033323 0.35 380 39.97 0.41753801703453064 
ALK7 81.262467 46.033464 0.52 380 39.16 0.41753801703453064 
ALK8 81.235861 46.061892 0.37 396 39.55 0.5087683796882629 
ALK9 81.236126 46.062183 0.38 396 39.55 0.5087683796882629 
ALK10 81.227602 46.09355 0.19 395 41.56 0.5410060882568359 
ALK11 81.226884 46.093285 0.13 395 41.56 0.5410060882568359 
ALK12 81.20694 46.153272 0.34 369 40.9 0.272049218416214 
ALK13 81.184885 46.143835 0.4 384 39.91 0.49335935711860657 
ALK14 81.175125 46.125639 0.73 401 40.55 0.5325705409049988 
ALK15 81.183753 46.120222 0.46 404 41.21 0.5124315023422241 
ALK16 81.184296 46.120402 0.41 404 41.21 0.5124315023422241 
ALK17 81.15495 46.164803 0.22 382 37.76 0.4547281265258789 
ALK18 81.155732 46.165621 0.21 382 37.76 0.4547281265258789 
ALK19 81.155817 46.165726 0.21 382 37.76 0.4547281265258789 
ALK20 81.045543 46.194957 0.22 379 39.85 0.30169597268104553 
ALK21 81.046017 46.194684 0.21 379 39.76 0.30169597268104553 
ALK22 80.988318 46.183279 0.21 390 40.75 0.43475303053855896 
ALK23 80.988355 46.183294 0.21 390 40.75 0.43475303053855896 
ALK24 80.830143 46.244836 0.2 381 44.13 0.13844919204711914 
ALK25 80.829652 46.212158 0.07 384 45.57 0.17097853124141693 
ALK26 80.829596 46.213915 0.08 384 45.57 0.17097853124141693 
ALK27 80.829592 46.213916 1.4 384 45.57 0.17097853124141693 
ALK28 81.054566 46.069562 0.36 495 40.66 0.5086142420768738 
ALK29 81.099052 46.036487 0.53 492 41.56 0.5497124791145325 
ALK30 81.100584 46.036445 0.47 492 40.5 0.5497124791145325 
ALK31 81.101486 46.036861 0.38 492 40.5 0.5497124791145325 
 
 
Fig. 1 presents the collected soil samples, which 

were used for laboratory measurement of electrical 
conductivity (EC) as ground-truth data. 

Fig. 2 shows the geographical location of the 
study area within Alakol District, Zhetisu region, 
including the spatial distribution of sampling sites. 
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Figure 1  – Soil samples collected from agricultural fields  
 
 

 
 

Figure 2 – Location of the study area and distribution of field sampling sites 
 
 

To monitor salinity dynamics over the 2024 
growing season, we acquired Sentinel-2 
MultiSpectral Instrument (MSI) imagery for each 
month from March through November (one cloud-
free scene per month). Sentinel-2 provides 13 
spectral bands, including visible, near-infrared 
(NIR), and shortwave-infrared (SWIR) 

wavelengths, at spatial resolutions of 10–20 m, with 
a 5-day revisit frequency. We downloaded Level-2A 
surface reflectance products (which are already 
atmospherically corrected to bottom-of-atmosphere 
reflectance) covering the study area. Each monthly 
image was projected to the WGS 84 / UTM Zone 
44N coordinate system and clipped to the 
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boundaries of the target agricultural fields. Cloud 
masking was applied using the Sentinel-2 Scene 
Classification Layer (SCL) to remove cloud- and 
shadow-affected pixels. We ensured minimal cloud 
cover by selecting images on or near clear-sky dates 
for each month; if the primary monthly image had 
cloud contamination, an alternate cloud-free image 
from the same month was used. This preprocessing 
workflow yielded a time-series of nine cloud-free 
reflectance maps (March–November 2024) for the 
region. All images were co-registered to ensure that 
multi-date pixel-wise comparisons were spatially 
consistent, and radiometric consistency was 
maintained by using the atmospherically corrected 
reflectances (ensuring comparability across dates). 
We also extracted reflectance and index values at the 
31 field sampling locations for each date to facilitate 
direct comparison with ground measurements of  
 

salinity. Fig. 3 illustrates the sequential workflow 
for mapping soil salinity using Sentinel-2 satellite 
imagery. The process comprises six main stages: 

-  High-resolution multispectral imagery from 
Sentinel-2 is acquired for the area of interest. These 
data provide the necessary spectral information to 
detect surface-level variations in soil properties, 
including salinity. 

-  Specific spectral bands (such as the Red, 
Green, and Near Infrared (NIR) bands) are selected 
based on their sensitivity to soil salinity and 
moisture content. These bands serve as the input for 
index-based salinity assessments. 

- The selected images undergo preprocessing 
steps, including atmospheric correction, resampling, 
and cropping. The cropping operation ensures that 
the imagery conforms to the boundaries of the study 
area, facilitating localized analysis. 

 

 
 

Figure 3 – Stages of soil salinity assessment based on remote sensing 
 
 

- Using the relevant bands, salinity indices are 
computed to generate raster layers. These layers 

indicate spatial variations in soil salinity levels 
based on spectral reflectance properties. 
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-  The index values are classified into 
predefined salinity categories (non-saline, slightly 
saline, moderate saline, and highly saline). This 
classification supports the interpretation and 
evaluation of salinity severity across the  
landscape. 

-  The final classified raster outputs are 
visualized as salinity maps.  

 
3. Results 
 
The NDSI analysis from March to November 

2024 shows clear temporal and spatial patterns of  
 

soil salinity across the study area. To interpret the 
index values, we categorised NDSI into four classes: 
non-saline, slightly saline, moderately saline and 
highly saline (Table 2).  

The NDSI was calculated using the spectral 
bands Red (Band 4) and Near-Infrared (NIR, Band 
8) from Sentinel-2 imagery [21]: 

 
NDSI = (Red−NIR)

(Red+NIR)
                           (1)  

 
Across all nine months, the observed NDSI 

values ranged approximately from –0.58 to –0.03 
(Table 3).  

 
Table 2 – Soil salinity classification. 
 

Categories EC(1:5) NDSI 
Non-saline <0,16 <0,2 

Slightly saline 0,16≤x<0,22 -0,2≤x<0 
Moderately saline 0,22≤x<0,74 0≤x<0,2 

Highly saline ≥0,74 ≥0,2 
 
 

Table 3 – Normalized difference salinity index measurements. 
 

Field № 
NDSI 

Mar Apr May Jun Jul Aug Sep Oct Nov 
ALK1  -0,171 -0,272 -0,295 -0,184 -0,130 -0,121 -0,144 -0,126 -0,112 
ALK2  -0,145 -0,208 -0,247 -0,161 -0,107 -0,094 -0,102 -0,099 -0,113 
ALK3  -0,112 -0,207 -0,223 -0,224 -0,171 -0,107 -0,114 -0,101 -0,103 
ALK4  -0,117 -0,180 -0,093 -0,105 -0,178 -0,578 -0,532 -0,220 -0,075 
ALK5  -0,128 -0,195 -0,150 -0,222 -0,282 -0,406 -0,493 -0,258 -0,117 
ALK6  -0,128 -0,264 -0,364 -0,367 -0,448 -0,457 -0,509 -0,367 -0,111 
ALK7  -0,098 -0,122 -0,103 -0,175 -0,252 -0,478 -0,373 -0,264 -0,141 
ALK8  -0,132 -0,268 -0,309 -0,430 -0,481 -0,364 -0,286 -0,194 -0,116 
ALK9  -0,101 -0,146 -0,171 -0,285 -0,292 -0,221 -0,253 -0,172 -0,090 
ALK10  -0,169 -0,267 -0,289 -0,163 -0,112 -0,149 -0,220 -0,193 -0,053 
ALK11  -0,081 -0,135 -0,158 -0,101 -0,521 -0,520 -0,297 -0,346 -0,128 
ALK12  -0,090 -0,193 -0,232 -0,322 -0,308 -0,326 -0,316 -0,178 -0,087 
ALK13  -0,104 -0,147 -0,197 -0,086 -0,304 -0,215 -0,106 -0,106 -0,104 
ALK14  -0,083 -0,182 -0,163 -0,208 -0,198 -0,221 -0,129 -0,116 -0,033 
ALK15  -0,138 -0,247 -0,280 -0,226 -0,126 -0,113 -0,150 -0,134 -0,078 
ALK16  -0,183 -0,291 -0,284 -0,170 -0,121 -0,115 -0,140 -0,130 -0,128 
ALK17  -0,110 -0,095 -0,242 -0,140 -0,116 -0,133 -0,177 -0,164 -0,138 
ALK18  -0,078 -0,128 -0,100 -0,201 -0,403 -0,449 -0,420 -0,189 -0,057 
ALK19  -0,078 -0,128 -0,100 -0,201 -0,403 -0,449 -0,420 -0,189 -0,057 
ALK20  -0,079 -0,090 -0,160 -0,271 -0,398 -0,268 -0,231 -0,157 -0,063 
ALK21  -0,064 -0,112 -0,135 -0,242 -0,427 -0,356 -0,162 -0,152 -0,109 
ALK22  -0,201 -0,330 -0,391 -0,247 -0,168 -0,137 -0,137 -0,116 -0,185 
ALK23  -0,117 -0,266 -0,485 -0,457 -0,189 -0,118 -0,125 -0,118 -0,156 
ALK24  -0,162 -0,253 -0,283 -0,229 -0,217 -0,238 -0,246 -0,196 -0,184 
ALK25  -0,203 -0,288 -0,295 -0,267 -0,214 -0,181 -0,176 -0,139 -0,053 
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Field № 
NDSI 

Mar Apr May Jun Jul Aug Sep Oct Nov 
ALK26  -0,185 -0,273 -0,232 -0,190 -0,143 -0,133 -0,145 -0,122 -0,120 
ALK27  -0,185 -0,273 -0,232 -0,190 -0,143 -0,133 -0,145 -0,122 -0,120 
ALK28  -0,107 -0,096 -0,066 -0,236 -0,253 -0,173 -0,133 -0,107 -0,136 
ALK29  -0,088 -0,135 -0,186 -0,193 -0,140 -0,106 -0,109 -0,105 -0,124 
ALK30  -0,068 -0,108 -0,142 -0,101 -0,072 -0,056 -0,095 -0,077 -0,081 
ALK31  -0,155 -0,212 -0,215 -0,138 -0,109 -0,089 -0,096 -0,091 -0,097 

 
 
Notably, almost none of the sampled locations 

exceeded an NDSI of 0, meaning moderate or high 
salinity levels were not reached in surface 
reflectance during 2024. Instead, most values fell in 

the non-saline or slightly saline categories. Figure 4, 
which displays monthly salinity maps, visually 
corroborates these findings by illustrating the expan-
sion and contraction of saline areas over the seasons. 

 
 

March April 

 
May 

 
June 

Continuation of the table
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July 

 
August 

 
September 

 
October 

 
November 

 
Figure 4 – Soil salinity distribution maps 

 
 
-  In early spring (March–April), soil salinity 

was generally low. March NDSI values averaged 
around –0.15 to –0.20 in many fields. By April, 
additional rainfall and early irrigation likely leached 
some surface salt, resulting in even more negative 

NDSI values in several fields. Many sites in April 
and May recorded NDSI below –0.2. This period 
represents the annual minimum for surface salinity; 
the land had been flushed by spring moisture, 
leaving little salt at the surface. For instance, ALK5  
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had an NDSI of –0.30 in May, compared to –0.16 in 
March – a drop indicating reduced salinity as spring 
progressed. 

-  Moving into summer, the trend reverses. By 
June, as temperatures rose and soils began drying, 
NDSI values in many fields started to increase, 
signaling a resurgence of salinity at the surface. The 
peak of summer (July–August) showed the most 
significant salinity levels. During July, a majority of 
fields shifted into the slightly saline category. By 
August, nearly all fields exhibited higher NDSI 
compared to spring: values commonly ranged from 
about –0.15 up to –0.08. A few fields even 
approached the threshold of moderate salinity – for 
example, one low-lying field reached an NDSI of –
0.05 in August, the highest value observed. 
Although these values remained just below zero, 
they indicate that salts had considerably 
accumulated on the soil surface by late summer.  

-  In the autumn months (September–
November), salinity levels exhibited slight 
improvements in some fields, while others remained 
high. September’s NDSI values were still elevated 
(mostly in the –0.1 to –0.18 range), not significantly 
different from August in many cases. However, by 
October, a modest decrease in salinity is evident in 
a number of fields: for instance, fields that had NDSI 
around –0.10 in late summer dropped to 
approximately –0.13 to –0.15 in October. This 
suggests that as temperatures fell and crop water use 
declined, there was less evaporation to concentrate 
salts, and any early autumn rainfall may have begun 
to dissolve or move salts downward.  

-  By November, a few fields continued to 
show some of the highest salinity readings of the 
year (NDSI ≈ –0.05 to –0.08, remaining in the 
slightly saline class despite the season), especially 
those that are poorly drained. In other fields,  
 

November brought further slight decreases in NDSI 
(down to ~–0.18 to –0.20), nearly returning to 
springtime non-saline levels.  

To assess the validity of the NDSI satellite 
indicator, a correlation analysis was performed 
using the Pearson correlation coefficient between 
EC and NDSI [22]: 

 
𝑟𝑟𝑟𝑟 = ∑ (𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖−𝑥̅𝑥𝑥𝑥)(𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖−𝑦𝑦𝑦𝑦�)𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖𝑖𝑖

�∑ (𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖−𝑥̅𝑥𝑥𝑥)2∙𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖𝑖𝑖 �∑ (𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖−𝑦𝑦𝑦𝑦)2𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖𝑖𝑖

               (2) 

 
where 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖  – EC value for i field, 

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 – NDSI value for i field, 
𝑥𝑥𝑥𝑥𝑥 – average EC value,  
𝑦𝑦𝑦𝑦𝑦 – average NDSI value. 
To estimate how much the observed value 

deviates from the expected value, if the null 
hypothesis is correct, we will calculate the t-
statistics:  

𝑡𝑡𝑡𝑡 = 𝑟𝑟𝑟𝑟𝑟√𝑛𝑛𝑛𝑛𝑛𝑛
√1−𝑟𝑟𝑟𝑟2

                             (3) 
 
After calculating t, this value will be compared 

with the Student's distribution (t-distribution) with 
df = n-2: 

𝑝𝑝𝑝𝑝 = 2 ∙ (1 − 𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(|𝑡𝑡𝑡𝑡|,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑))               (4) 
 
𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 – cumulative distribution function, 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = n-2 
The calculation results are shown in Table 4. 

There is a weak but positive relationship between 
the EC and NDSI values, which gives the right to 
use NDSI as a reliable indicator of salinity for 
monitoring large areas without the need for 
continuous sampling. Non-simultaneous 
measurements are a limitation for calculations, since 
the EC is taken at one moment, and the NDSI 
changes monthly. 

 
Table 4 – NDSI satellite indicator validity assessment. 
 

Month r t p-value Interpretation 
March –0.0047 –0.025 0.980 No connection 
April –0.0260 –0.140 0.889 No connection 
May +0.1128 +0.611 0.546 Weak positive connection 
June +0.0494 +0.266 0.792 No connection 
July +0.1889 +1.036 0.309 Weak positive connection 

August +0.1775 +0.972 0.339 Weak positive connection 
September +0.1563 +0.852 0.401 Weak positive connection 

October +0.1673 +0.914 0.368 Weak positive connection 
November +0.0147 +0.079 0.938 No connection 
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Superimposed on these temporal trends are 
distinct spatial patterns in salinity. Certain fields 
consistently showed higher salinity than others, 
underlining the role of site-specific factors. In 
particular, fields situated at lower elevations or 
poorly drained positions were much more prone to 
salinisation. For example, ALK27 (located in a 
topographic depression near the lake plain) had 
NDSI values of approximately –0.28 in May 
(virtually non-saline after spring rains) but rose to 
around –0.06 by November, categorising it as one of 
the most saline fields by year’s end. In contrast, 
ALK28, which lies on higher ground, ranged from 
about –0.25 (May) to –0.12 (August), never 
exceeding the slightly saline range and ending the 
season near –0.18 in November. This comparison 
illustrates that the low-lying field accumulated and 
retained far more salt over the season than the 
upland field. Such patterns were typical: nearly all 
the lowest-lying fields had the highest salinity 
readings, whereas fields at higher elevations or with 
better natural drainage remained relatively less 
affected. This observation aligns with the ground 
truth data, which showed that the lowest elevation 
sites had the highest soil EC measurements.  

Series of maps in Fig. 4 highlights these spatial 
differences – the same areas (notably, the northern 
and central parts of the district closer to Lake 
Alakol) repeatedly show up as saline-hued zones in 
summer and autumn, whereas southern and higher-
elevation plots stay blue (non-saline) throughout. 

  
4. Discussion 
 
The spatio-temporal patterns observed in this 

study reflect the interplay of climatic, hydrological, 
and land-use factors characteristic of semi-arid 
irrigated environments. During spring, precipitation 
and irrigation water dilute and leach salts from the 
topsoil, whereas in summer, high evaporation rates 
draw moisture up, causing dissolved salts to 
crystallise at the surface [23, 24]. Our results 
confirm this cycle – the pronounced increase in 
salinity from May to August indicates evaporative 
salt concentration under hot, dry conditions. By late 
autumn, the slight reductions in NDSI in some fields 
suggest that cooler temperatures and occasional rain 
may have partially re-dissolved surface salts. 
However, the fact that many fields remained more 
saline in November than in March implies that 
seasonal flushing was incomplete. In practice, this 
means salts can carry over into the next year, leading 

to a gradual buildup if not managed. Thus, even 
though salinity may appear to recede each spring, 
the summer accumulations pose a recurring stress 
that can contribute to long-term soil degradation if 
proper remediation is not in place. 

Topography and water flow emerge as critical 
drivers of the spatial salinity patterns [25]. Fields in 
depressions or near the lake plain consistently 
showed higher salinity, which is consistent with 
water pooling and evaporating in these low-lying 
areas, leaving behind salt deposits. In contrast, fields 
on slight rises or with better drainage had lower 
NDSI values, as excess water (and salt) could more 
easily percolate away. This observation corresponds 
with well-known behaviour of salts accumulating in 
landscape low points. Similar findings have been 
reported in other Central Asian studies [8, 9] – for 
instance, a regional analysis noted that areas around 
irrigation water sources and topographic low points 
are at highest risk of salinity escalation. Our field-
scale heterogeneity (where adjacent fields had quite 
different salinity levels) also echoes the work of [7], 
who found strong spatial variability in salinity due 
to differences in soil properties and irrigation 
practices even within a small area. Such 
comparisons highlight that local factors (micro-
relief, irrigation scheduling, soil texture, etc.) can 
cause significant divergence in salinity outcomes, 
underlining the importance of site-specific 
management strategies. Regarding the efficacy of 
the NDSI approach, our use of a simple spectral 
index proved effective in capturing surface salt 
dynamics.  

The temporal trends in NDSI aligned with 
expected seasonal salinity changes and qualitatively 
matched ground EC data–fields with higher EC 
generally showed less negative NDSI values. This 
confirms NDSI’s usefulness as a rapid, cost-
effective tool for surface salinity monitoring. Its 
sensitivity enabled detection of subtle monthly 
variations and emerging salinity hotspots. However, 
NDSI reflects only surface conditions and can be 
influenced by vegetation or soil moisture. In areas 
with dense crop cover, salinity may be 
underestimated due to spectral masking. Moreover, 
similar reflectance can result from dry soil or 
carbonates, reducing specificity. In this study, the 
predominantly bare fields enhanced the reliability of 
NDSI, though its effectiveness may decline in 
heavily vegetated areas. 

Another limitation of NDSI is its inability to 
detect subsurface salinity–salts beneath a thin 
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surface layer may go unnoticed until they re-emerge. 
To address this, integrating radar data (e.g., 
Sentinel-1) can improve detection, as radar is 
sensitive to surface roughness and moisture and is 
unaffected by vegetation cover. Studies in 
Kazakhstan confirm that combining optical and 
radar imagery enhances salinity mapping accuracy 
[6, 7]. Thermal infrared data could also help by 
revealing moisture and evaporation patterns linked 
to salinity. Additionally, machine learning models 
that integrate multiple indices and auxiliary data 
(e.g., terrain, climate) can improve prediction. 
While NDSI was effective for surface monitoring in 
this study, a multi-source, multi-index approach 
would offer a more comprehensive assessment. 

 
5. Conclusion 
 
This study provided a detailed spatio-temporal 

assessment of soil salinity in irrigated agricultural 
lands of Alakol District, Kazakhstan, using time-
series Sentinel-2 imagery. By tracking the NDSI 
over the 2024 growing season (March to 
November), we identified clear seasonal patterns: 
salinity was lowest in spring after winter and early 
rains, increased markedly in summer due to 
evaporation and irrigation practices, and persisted 
into autumn to varying degrees across the landscape. 
Spatial analysis further revealed that salinity issues 
are concentrated in specific areas – notably, low-
lying fields near the lake basin experienced the 
greatest salt accumulation, whereas upland fields 
were relatively less affected. Importantly, the 
salinity levels observed (as indicated by NDSI) 
remained in the slight to moderate range, with no 
extreme salinity outbreaks during the study period. 
This suggests that while salinisation is a concern, it 
may still be at a manageable stage if addressed 
promptly. The findings underscore the importance 
of monitoring soil salinity over time. A one-off 
measurement provides only a snapshot; in contrast, 
the temporal approach adopted here captures the 
dynamic nature of salinity, revealing when peaks 
occur and when remediation would be most needed. 

Although the statistical correlation between the 
Normalized Difference Salinity Index (NDSI) and 
field-measured electrical conductivity (EC) was 
modest, the index effectively captured distinct 
seasonal and spatial patterns of soil salinity. Given 
the limitations in ground data frequency and 
temporal alignment, NDSI values should not be 
interpreted in absolute terms. Instead, they should be 
regarded as qualitative indicators of salinity 
variation, capable of supporting spatiotemporal 
monitoring and the identification of emerging 
salinity hotspots. Future research should aim to 
improve ground validation protocols through more 
frequent and temporally aligned EC sampling and 
explore the integration of NDSI with complemen-
tary data sources–such as radar imagery, soil 
moisture metrics, and topographic parameters – 
using hybrid or machine learning-based models to 
enhance the accuracy and robustness of salinity 
assessments. 
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