ISSN 2958-0846 eISSN 2958-0854

IRSTI 20.23.27

Journal of Problems in Computer Science and Information Technologies Ne3 (3) 2025

. @

'Al-Farabi Kazakh National University, Almaty, Kazakhstan
“Institute of Information and Computational Technologies, Almaty, Kazakhstan
“e-mail: aisulu.ataniyazova@gmail.com

SPATIOTEMPORAL ASSESSMENT OF SOIL SALINITY
IN IRRIGATED AGRICULTURAL LANDS
OF KAZAKHSTAN USING REMOTE SENSING

Aisulu Ataniyazova'* & , Timur Merembayev

Abstract. Soil salinization poses a significant threat to agricultural productivity and environmental
sustainability, particularly in arid and semi-arid regions. This study presents a comprehensive spatiotem-
poral analysis of soil salinity dynamics in irrigated lands of Alakol District, Zhetisu Region, Kazakhstan,
using multi-temporal Sentinel-2 satellite imagery and the Normalized Difference Salinity Index (NDSI).
The analysis covered the 2024 growing season, from March to November, with one cloud-free image se-
lected for each month. NDSI values were calculated monthly and classified into four salinity categories:
non-saline, slightly saline, moderately saline, and highly saline. Field sampling at 31 locations provided
electrical conductivity (EC) data for validation, enabling comparison between surface reflectance-based
salinity estimates and ground measurements. The results demonstrated pronounced seasonal trends:
NDSI values were lowest in spring due to leaching by precipitation and early irrigation, gradually in-
creasing through summer as evaporation concentrated salts at the surface, and fluctuating in autumn
depending on rainfall and drainage conditions. Spatially, fields situated in topographic depressions or
near Lake Alakol exhibited the highest salinity levels, whereas upland areas remained relatively unaf-
fected. Notably, no fields exceeded the moderate salinity threshold, indicating that while salinization
is present, it remains in early stages. The NDSI approach proved effective for surface salinity detection,
capturing both temporal fluctuations and spatial heterogeneity. These findings underscore the utility of
remote sensing for operational salinity monitoring and highlight the importance of continuous observa-
tion to inform timely land management interventions. This study offers actionable insights for sustain-
able agriculture, particularly in tailoring irrigation and drainage strategies to mitigate salinity risks across
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vulnerable farmlands in Central Asia.

Keywords: land degradation, soil salinity, electrical conductivity, remote sensing, satellite images,
normalized difference salinity index, spatiotemporal dynamics.

1. Introduction

Soil salinization is a severe form of land
degradation that threatens agricultural productivity
and ecosystem health worldwide. Traditional
methods of mapping soil salinity rely on extensive
ground sampling and laboratory analysis, which are
labor-intensive, costly, and impractical for large
areas. In recent years, remote sensing satellites
coupled with machine learning have emerged as
efficient tools for assessing and mapping soil
salinity across wide regions [1, 2]. Optical sensors
(Landsat, Sentinel-2) and radar sensors (Sentinel-1)
can detect spectral and backscatter signatures related
to surface salt content, while ML algorithms can

learn complex relationships between those
signatures and ground-measured salinity.
Multi-spectral optical imagery and radar

imagery are widely used to detect salinity-induced
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signals on the soil surface. Salt-affected soils often
exhibit characteristic spectral signatures, such as
high reflectance in visible and near-infrared bands
or distinctive vegetation stress signals. Many studies
derive spectral indices to enhance salinity detection.
For example, researchers in the Great Hungarian
Plain [3] (Eastern Europe) used Landsat 8 to
compute vegetation and salinity indices (along with
principal components and land surface temperature)
as inputs to regression models. In arid regions of
Abu Dhabi, indices like NDVI (Normalized
Difference Vegetation Index) and BSI (Bare Soil
Index) showed moderate correlation with soil
electrical conductivity, and their combination
improved salinity prediction models [4]. Such
indices capture reduced vegetation vigor or exposed
bright soils typical of saline areas. However, optical
methods have limits: heavy vegetation can mask soil
signals, and beyond the top ~5 cm of soil, optical
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reflectance is less sensitive to salt content [5]. To
address this, some studies incorporate thermal
infrared data (sensitive to soil moisture and salinity
effects) or hyperspectral imagery for more
diagnostic spectral features, though these data are
less commonly available.

Central Asia has been a focal point for salinity
research due to intensive irrigation and
desertification. Mukhamediev et al. mapped soil
salinity across Turkestan, Almaty, Zhambyl, and
Kyzylorda using a fusion of Sentinel-1 SAR and
Landsat optical data, combined with machine
learning models [6]. Their approach — employing
boosted regression trees (XGBoost/LightGBM)
outperformed models using optical data alone,
showing better agreement with ground EC
measurements. Using explainable ML, they also
optimized feature selection without reducing
accuracy. Notably, their regional model
outperformed a global salinity model, highlighting
the importance of local calibration. Merembayev et
al. studied salinity in arid irrigated farms using high-
resolution radar textures and ML [7]. They
highlighted strong spatial heterogeneity in salinity
due to variable soil and irrigation conditions, which
complicates mapping efforts. Their results showed
that careful data partitioning and maintaining
representative value distributions were key for
model performance. LightGBM and Ridge
regression achieved the best results (R? ~0.68). The
authors suggest future work should explore deep
learning and physics-based models to enhance
accuracy.

Researchers in [8] assessed soil salinity changes
under climate change in the Khorezm region of
Uzbekistan — an area with extensive irrigation. Their
analysis noted that over the last 40 years, soil
salinity has increased due to rising temperatures and
poor drainage, and using saline groundwater for
irrigation has exacerbated secondary salinization.
By integrating remote sensing with climate data,
they linked periods of warming and reduced river
inflows to spikes in soil salt levels, predicting that
climate change will continue to aggravate salinity
unless irrigation management improves. A broader
scale analysis by [9] provides a striking forecast for
Central Asia. Using an automated ML framework to
analyze drivers of salinity across Central Asia and
neighboring Xinjiang (western China), they found
that meteorological factors (aridity, temperature)
exert the strongest influence on soil salt content,
often interacting with landscape position (e.g. low-
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lying basins). Their model projected that with
extreme climate warming scenarios, average soil
salt concentrations could rise by about +21% in
Central Asia by 2100, and as much as +65% in
Xinjiang. Areas around irrigation water sources and
topographic low points are at highest risk of salinity
escalation. This study’s methodology — using ML to
parse out interaction effects between climate,
topography, and human factors — is an innovative
approach to understand spatio-temporal dynamics. It
provides a quantitative glimpse into the future,
highlighting that without intervention, Central
Asia’s salinization will intensify under climate
change.

A major advantage of satellite-based monitoring
is the ability to track salinity changes over time —
capturing both seasonal fluctuations and long-term
trends. Historically, most remote sensing salinity
studies focused on mapping spatial patterns at a
single time, often neglecting the temporal dimension
[10]. Recent work is beginning to fill this gap by
leveraging multi-temporal image series and time-
series analysis. In irrigated areas, soil salinity
fluctuates seasonally—often rising during dry periods
due to evaporation and decreasing after rain or
irrigation. Dense time-series from Sentinel-2 have
been used to detect such patterns. For instance, [11]
identified higher salinity in the dry season in China's
Ebinur Lake wetland using RF models. Similarly, a
study in the Werigan—Kuqa Oasis [12] found
salinity shifts linked to precipitation variability, with
expansion during droughts and retraction in wetter
years. Multi-date imagery reduces noise and
improves model accuracy. Duan et al. proposed a
“combined-temporal” approach using multiple
Sentinel-2 images around the sampling date [13].
This stabilized spectral signatures and improved
model performance (R?=0.72, RMSE = 0.87 dS/m).
However, salinity signals are affected by vegetation
phenology and cropping cycles, necessitating
integration with seasonal land cover and crop type
data.

Comparing salinity maps over years reveals
degradation or improvement patterns. In Zaghouan,
Tunisia, salinized areas expanded from 2000 to
2023, linked to reduced rainfall and land use change
(r = —0.85 with precipitation), highlighting climate
change as a key driver [13]. In contrast, the Xinjiang
Oasis saw a salinity decline over 25 years, with non-
salinized land increasing and severe salinity
retreating due to improved irrigation and drainage.
Evidence from Iran’s Golestan Province also
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showed salinity reduction after drainage system
installation, confirmed via satellite data. Meanwhile,
in Central Asia’s Kashgar region [14], time-series
analyses revealed worsening salinity due to
reclamation without drainage—mirroring issues in
the Aral Sea basin.

A few studies directly compared different
remote sensing approaches for mapping soil salinity
under various environmental conditions. For
instance, [15] compared Sentinel-2 vs Landsat-8
imagery for salinity mapping in a Mediterranean
site, finding Sentinel-2’s higher resolution gave it an
edge in detecting fine-scale salinity patches.
Conversely, another study in a Chinese wetland
found Landsat-8’s inclusion of a thermal band
(absent in Sentinel-2) made it slightly superior for
salinity estimation using a cubist model [16]. Such
comparisons suggest that the “best” satellite
platform may vary with context — Sentinel-2 excels
with spatial detail and revisit frequency, whereas
Landsat’s thermal data can help in humid areas
where evapotranspiration differences are key. In
practice, many studies now use both (taking
advantage of the combined 5-day revisit of Sentinel-
2 and Landsat-8). On the ML side, comparisons like
those by [17] in GEE have provided valuable
guidance — they noted that while a CART model
achieved the lowest error on training data, it tended
to overfit extreme salinity, whereas RF provided
more reliable generalization across landscapes. This
hints that for operational mapping, a slightly less
“accurate” but more stable model (RF) may be
preferable to avoid speckled or noisy salinity
maps.

Reliable ML modeling hinges on quality ground
truth data, yet in many regions soil salinity sampling
is sparse and infrequent due to the costs and effort
required [18]. Small sample sizes can lead to
unstable models. Most remote sensing methods
primarily sense surface salt. This is problematic
because harmful salinity can build up below the
topsoil and escape detection until it surfaces [19,
20]. There is consensus that passive optical methods
alone cannot fully capture subsoil salinity — thus,
research is heading toward combining satellite data
with geophysical surveys (EM induction, resistivity)
or soil hydraulic models to infer salt distribution in

the profile. Thus, despite existing advances, using
remote sensing or machine learning in isolation
often faces limitations — such as sensitivity to
seasonal variability, limited model transferability, or
instability in interpreting temporal signals. The
present study is aimed at assessing the spatial and
temporal dynamics of soil salinity within the
selected territory in the period from March to
November. Based on the interpretation of satellite
images and data processing in the GIS environment,
an analysis of salinity changes has been performed,
which allows not only to identify seasonal trends,
but also to justify the need for sustainable
approaches to land management.

2. Materials and methods

The study was conducted in the agricultural
lands of Alakol District, Zhetisu region,
Kazakhstan, encompassing a semi-arid continental
environment. The area lies approximately between
46°N and 8I°E (near Lake Alakol’s basin),
characterized by hot, dry summers and cold winters
. Annual precipitation is low (=150-280 mm), with
most rain falling in spring (April-May) and late
autumn. This climate and intensive irrigation
practices make the region prone to soil salinization,
as evaporation often exceeds rainfall, leading to salt
accumulation at the surface. Thirty-one sampling
sites were selected across the district’s farmlands to
capture spatial variability. At each site, we collected
surface soil samples and measured electrical
conductivity in a 1:5 soil-water extract as a ground
truth indicator of salinity. The EC values ranged
from 0.07 (non-saline) up to 1.4 (highly saline) in
the 1:5 extract. We also recorded terrain attributes at
each site: elevation (from a DEM), local slope, and
ambient surface temperature. Elevations spanned
~379-495 m above sea level (lower toward the lake
plain, higher in uplands), and slopes were gentle
(mostly <I1° incline). Notably, the lowest-lying
fields tended to have higher measured salinity,
consistent with salt accumulation in topographic
depressions. Table 1 summarizes the field data,
including coordinates, electrical conductivity (EC),
elevation, surface temperature, and slope values for
each of the 31 sampling sites.
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Table 1 — Field data

Field Ne X Y ESS%S)’ DEM, m tesr‘:l:)faf,ec Slope

ALK1 81.263687 46.013337 0.16 387 42.35 0.8863131403923035
ALK2 81.263322 46.013021 0.2 387 42.35 0.8863131403923035
ALK3 81.262991 46.012058 0.44 387 42.35 0.8863131403923035
ALK4 81.252822 46.014737 0.15 386 42.78 0.4236890375614166
ALKS 81.252683 46.014185 0.48 386 42.78 0.4236890375614166
ALK6 81.258905 46.033323 0.35 380 39.97 0.41753801703453064
ALK7 81.262467 46.033464 0.52 380 39.16 0.41753801703453064
ALKS8 81.235861 46.061892 0.37 396 39.55 0.5087683796882629
ALK9 81.236126 46.062183 0.38 396 39.55 0.5087683796882629
ALK10 81.227602 46.09355 0.19 395 41.56 0.5410060882568359
ALKI11 81.226884 46.093285 0.13 395 41.56 0.5410060882568359
ALK12 81.20694 46.153272 0.34 369 40.9 0.272049218416214
ALKI13 81.184885 46.143835 0.4 384 39.91 0.49335935711860657
ALK14 81.175125 46.125639 0.73 401 40.55 0.5325705409049988
ALK15 81.183753 46.120222 0.46 404 41.21 0.5124315023422241
ALK16 81.184296 46.120402 0.41 404 41.21 0.5124315023422241
ALK17 81.15495 46.164803 0.22 382 37.76 0.4547281265258789
ALK18 81.155732 46.165621 0.21 382 37.76 0.4547281265258789
ALK19 81.155817 46.165726 0.21 382 37.76 0.4547281265258789
ALK20 81.045543 46.194957 0.22 379 39.85 0.30169597268104553
ALK21 81.046017 46.194684 0.21 379 39.76 0.30169597268104553
ALK22 80.988318 46.183279 0.21 390 40.75 0.43475303053855896
ALK23 80.988355 46.183294 0.21 390 40.75 0.43475303053855896
ALK24 80.830143 46.244836 0.2 381 44.13 0.13844919204711914
ALK25 80.829652 46.212158 0.07 384 45.57 0.17097853124141693
ALK26 80.829596 46.213915 0.08 384 45.57 0.17097853124141693
ALK27 80.829592 46.213916 1.4 384 45.57 0.17097853124141693
ALK28 81.054566 46.069562 0.36 495 40.66 0.5086142420768738
ALK29 81.099052 46.036487 0.53 492 41.56 0.5497124791145325
ALK30 81.100584 46.036445 0.47 492 40.5 0.5497124791145325
ALK31 81.101486 46.036861 0.38 492 40.5 0.5497124791145325
Fig. 1 presents the collected soil samples, which Fig. 2 shows the geographical location of the

were used for laboratory measurement of electrical ~ study area within Alakol District, Zhetisu region,
conductivity (EC) as ground-truth data. including the spatial distribution of sampling sites.
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Figure 1 — Soil samples collected from agricultural fields
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Figure 2 — Location of the study area and distribution of field sampling sites

To monitor salinity dynamics over the 2024
growing season, we acquired Sentinel-2
MultiSpectral Instrument (MSI) imagery for each
month from March through November (one cloud-
free scene per month). Sentinel-2 provides 13
spectral bands, including visible, near-infrared
(NIR), and shortwave-infrared (SWIR)

wavelengths, at spatial resolutions of 10-20 m, with
a 5-day revisit frequency. We downloaded Level-2A
surface reflectance products (which are already
atmospherically corrected to bottom-of-atmosphere
reflectance) covering the study area. Each monthly
image was projected to the WGS 84 / UTM Zone
44N coordinate system and clipped to the
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boundaries of the target agricultural fields. Cloud
masking was applied using the Sentinel-2 Scene
Classification Layer (SCL) to remove cloud- and
shadow-affected pixels. We ensured minimal cloud
cover by selecting images on or near clear-sky dates
for each month; if the primary monthly image had
cloud contamination, an alternate cloud-free image
from the same month was used. This preprocessing
workflow yielded a time-series of nine cloud-free
reflectance maps (March—November 2024) for the
region. All images were co-registered to ensure that
multi-date pixel-wise comparisons were spatially
consistent, and radiometric consistency was
maintained by using the atmospherically corrected
reflectances (ensuring comparability across dates).
We also extracted reflectance and index values at the
31 field sampling locations for each date to facilitate
direct comparison with ground measurements of

Loading Sentinel-2 satellite Images I:lr> Selecting relevant bands |:lr> Image preprocessing and cropping

Obtain high-resolution satellite imagery
for the selected region

Generating salinity maps QZI Soil salinity classification <::I Calculating salinity index rasters

[ ] Non-saline
[ ] siightly saline
- Saline
B Highy saline

Visualize final maps showing soil salinity
distribution

Choose specific spectral bands required
for calculating salinity indices

Classify areas from non-saline to highly
saline based on index values

salinity. Fig. 3 illustrates the sequential workflow
for mapping soil salinity using Sentinel-2 satellite
imagery. The process comprises six main stages:

- High-resolution multispectral imagery from
Sentinel-2 is acquired for the area of interest. These
data provide the necessary spectral information to
detect surface-level variations in soil properties,
including salinity.

- Specific spectral bands (such as the Red,
Green, and Near Infrared (NIR) bands) are selected
based on their sensitivity to soil salinity and
moisture content. These bands serve as the input for
index-based salinity assessments.

- The selected images undergo preprocessing
steps, including atmospheric correction, resampling,
and cropping. The cropping operation ensures that
the imagery conforms to the boundaries of the study
area, facilitating localized analysis.

HGE Comasste

Process and crop the images to match
the boundaries of the study area

Use selected bands to compute raster
layers that indicate soil salinity

Figure 3 — Stages of soil salinity assessment based on remote sensing

- Using the relevant bands, salinity indices are
computed to generate raster layers. These layers
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indicate spatial variations in soil salinity levels
based on spectral reflectance properties.
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- The index values are classified into
predefined salinity categories (non-saline, slightly
saline, moderate saline, and highly saline). This

classification supports the interpretation and
evaluation of salinity severity across the
landscape.

- The final classified raster outputs are

visualized as salinity maps.
3. Results

The NDSI analysis from March to November
2024 shows clear temporal and spatial patterns of

Table 2 — Soil salinity classification.

soil salinity across the study area. To interpret the
index values, we categorised NDSI into four classes:
non-saline, slightly saline, moderately saline and
highly saline (Table 2).

The NDSI was calculated using the spectral
bands Red (Band 4) and Near-Infrared (NIR, Band
8) from Sentinel-2 imagery [21]:

_ (Red-NIR)

NDSI = (Red+NIR) (1)

Across all nine months, the observed NDSI
values ranged approximately from —0.58 to —0.03
(Table 3).

Categories ECa:s) NDSI
Non-saline <0,16 <0,2
Slightly saline 0,16<x<0,22 -0,2<x<0
Moderately saline 0,22<x<0,74 0<x<0,2
Highly saline >0,74 >0,2
Table 3 — Normalized difference salinity index measurements.
. NDSI
Field Ne
Mar Apr May Jun Jul Aug Sep Oct Nov

ALK]1 -0,171 -0,272 -0,295 -0,184 -0,130 -0,121 -0,144 -0,126 -0,112
ALK2 -0,145 -0,208 -0,247 -0,161 -0,107 -0,094 -0,102 -0,099 -0,113
ALK3 -0,112 -0,207 -0,223 -0,224 -0,171 -0,107 -0,114 -0,101 -0,103
ALK4 -0,117 -0,180 -0,093 -0,105 -0,178 -0,578 -0,532 -0,220 -0,075
ALKS -0,128 -0,195 -0,150 -0,222 -0,282 -0,406 -0,493 -0,258 -0,117
ALK6 -0,128 -0,264 -0,364 -0,367 -0,448 -0,457 -0,509 -0,367 -0,111
ALK7 -0,098 -0,122 -0,103 -0,175 -0,252 -0,478 -0,373 -0,264 -0,141
ALKS -0,132 -0,268 -0,309 -0,430 -0,481 -0,364 -0,286 -0,194 -0,116
ALK9 -0,101 -0,146 -0,171 -0,285 -0,292 -0,221 -0,253 -0,172 -0,090
ALK10 -0,169 -0,267 -0,289 -0,163 -0,112 -0,149 -0,220 -0,193 -0,053
ALK11 -0,081 -0,135 -0,158 -0,101 -0,521 -0,520 -0,297 -0,346 -0,128
ALK12 -0,090 -0,193 -0,232 -0,322 -0,308 -0,326 -0,316 -0,178 -0,087
ALK13 -0,104 -0,147 -0,197 -0,086 -0,304 -0,215 -0,106 -0,106 -0,104
ALK14 -0,083 -0,182 -0,163 -0,208 -0,198 -0,221 -0,129 -0,116 -0,033
ALKI1S5 -0,138 -0,247 -0,280 -0,226 -0,126 -0,113 -0,150 -0,134 -0,078
ALK16 -0,183 -0,291 -0,284 -0,170 -0,121 -0,115 -0,140 -0,130 -0,128
ALK17 -0,110 -0,095 -0,242 -0,140 -0,116 -0,133 -0,177 -0,164 -0,138
ALK18 -0,078 -0,128 -0,100 -0,201 -0,403 -0,449 -0,420 -0,189 -0,057
ALK19 -0,078 -0,128 -0,100 -0,201 -0,403 -0,449 -0,420 -0,189 -0,057
ALK20 -0,079 -0,090 -0,160 -0,271 -0,398 -0,268 -0,231 -0,157 -0,063
ALK21 -0,064 -0,112 -0,135 -0,242 -0,427 -0,356 -0,162 -0,152 -0,109
ALK22 -0,201 -0,330 -0,391 -0,247 -0,168 -0,137 -0,137 -0,116 -0,185
ALK23 -0,117 -0,266 -0,485 -0,457 -0,189 -0,118 -0,125 -0,118 -0,156
ALK24 -0,162 -0,253 -0,283 -0,229 -0,217 -0,238 -0,246 -0,196 -0,184
ALK25 -0,203 -0,288 -0,295 -0,267 -0,214 -0,181 -0,176 -0,139 -0,053
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Continuation of the table

. NDSI
Field Ne
Mar Apr May Jun Jul Aug Sep Oct Nov

ALK26 -0,185 -0,273 -0,232 -0,190 -0,143 -0,133 -0,145 -0,122 -0,120
ALK27 -0,185 -0,273 -0,232 -0,190 -0,143 -0,133 -0,145 -0,122 -0,120
ALK28 -0,107 -0,096 -0,066 -0,236 -0,253 -0,173 -0,133 -0,107 -0,136
ALK29 -0,088 -0,135 -0,186 -0,193 -0,140 -0,106 -0,109 -0,105 -0,124
ALK30 -0,068 -0,108 -0,142 -0,101 -0,072 -0,056 -0,095 -0,077 -0,081
ALK31 -0,155 -0,212 -0,215 -0,138 -0,109 -0,089 -0,096 -0,091 -0,097

Notably, almost none of the sampled locations
exceeded an NDSI of 0, meaning moderate or high
salinity levels were not reached in surface
reflectance during 2024. Instead, most values fell in

the non-saline or slightly saline categories. Figure 4,
which displays monthly salinity maps, visually
corroborates these findings by illustrating the expan-
sion and contraction of saline areas over the seasons.
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Figure 4 — Soil salinity distribution maps

- In early spring (March—April), soil salinity =~ NDSI values in several fields. Many sites in April
was generally low. March NDSI values averaged and May recorded NDSI below —0.2. This period
around —0.15 to —0.20 in many fields. By April, represents the annual minimum for surface salinity;
additional rainfall and early irrigation likely leached  the land had been flushed by spring moisture,
some surface salt, resulting in even more negative leaving little salt at the surface. For instance, ALKS
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had an NDSI of —0.30 in May, compared to —0.16 in
March — a drop indicating reduced salinity as spring
progressed.

- Moving into summer, the trend reverses. By
June, as temperatures rose and soils began drying,
NDSI values in many fields started to increase,
signaling a resurgence of salinity at the surface. The
peak of summer (July—August) showed the most
significant salinity levels. During July, a majority of
fields shifted into the slightly saline category. By
August, nearly all fields exhibited higher NDSI
compared to spring: values commonly ranged from
about —0.15 up to —0.08. A few fields even
approached the threshold of moderate salinity — for
example, one low-lying field reached an NDSI of —
0.05 in August, the highest value observed.
Although these values remained just below zero,
they indicate that salts had considerably
accumulated on the soil surface by late summer.

- In the autumn months (September—
November), salinity levels exhibited slight
improvements in some fields, while others remained
high. September’s NDSI values were still elevated
(mostly in the —0.1 to —0.18 range), not significantly
different from August in many cases. However, by
October, a modest decrease in salinity is evident in
a number of fields: for instance, fields that had NDSI
around -0.10 in late summer dropped to
approximately —0.13 to —0.15 in October. This
suggests that as temperatures fell and crop water use
declined, there was less evaporation to concentrate
salts, and any early autumn rainfall may have begun
to dissolve or move salts downward.

- By November, a few fields continued to
show some of the highest salinity readings of the
year (NDSI = —0.05 to —0.08, remaining in the
slightly saline class despite the season), especially
those that are poorly drained. In other fields,

Table 4 — NDSI satellite indicator validity assessment.

November brought further slight decreases in NDSI
(down to ~-0.18 to —0.20), nearly returning to
springtime non-saline levels.

To assess the validity of the NDSI satellite
indicator, a correlation analysis was performed
using the Pearson correlation coefficient between
EC and NDSI [22]:

r = Z?:l(xl_f)(yl_y) (2)
[P0 S iy

where x; — EC value for i field,

y; — NDSI value for i field,

X — average EC value,

y — average NDSI value.

To estimate how much the observed value
deviates from the expected value, if the null
hypothesis is correct, we will calculate the t-
statistics:

rn—2

L= )

After calculating t, this value will be compared
with the Student's distribution (t-distribution) with
df =n-2:

p=2-(1—=Tcpr(|t], df)) “

Tcpr — cumulative distribution function,

df =n-2

The calculation results are shown in Table 4.
There is a weak but positive relationship between
the EC and NDSI values, which gives the right to
use NDSI as a reliable indicator of salinity for
monitoring large areas without the need for
continuous sampling. Non-simultaneous
measurements are a limitation for calculations, since
the EC is taken at one moment, and the NDSI
changes monthly.

Month r t p-value Interpretation
March —0.0047 —-0.025 0.980 No connection
April —0.0260 —0.140 0.889 No connection
May +0.1128 +0.611 0.546 Weak positive connection
June +0.0494 +0.266 0.792 No connection
July +0.1889 +1.036 0.309 Weak positive connection
August +0.1775 +0.972 0.339 Weak positive connection
September +0.1563 +0.852 0.401 Weak positive connection
October +0.1673 +0.914 0.368 Weak positive connection
November +0.0147 +0.079 0.938 No connection
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Superimposed on these temporal trends are
distinct spatial patterns in salinity. Certain fields
consistently showed higher salinity than others,
underlining the role of site-specific factors. In
particular, fields situated at lower elevations or
poorly drained positions were much more prone to
salinisation. For example, ALK27 (located in a
topographic depression near the lake plain) had
NDSI values of approximately —0.28 in May
(virtually non-saline after spring rains) but rose to
around —0.06 by November, categorising it as one of
the most saline fields by year’s end. In contrast,
ALK28, which lies on higher ground, ranged from
about —0.25 (May) to —0.12 (August), never
exceeding the slightly saline range and ending the
season near —0.18 in November. This comparison
illustrates that the low-lying field accumulated and
retained far more salt over the season than the
upland field. Such patterns were typical: nearly all
the lowest-lying fields had the highest salinity
readings, whereas fields at higher elevations or with
better natural drainage remained relatively less
affected. This observation aligns with the ground
truth data, which showed that the lowest elevation
sites had the highest soil EC measurements.

Series of maps in Fig. 4 highlights these spatial
differences — the same areas (notably, the northern
and central parts of the district closer to Lake
Alakol) repeatedly show up as saline-hued zones in
summer and autumn, whereas southern and higher-
elevation plots stay blue (non-saline) throughout.

4. Discussion

The spatio-temporal patterns observed in this
study reflect the interplay of climatic, hydrological,
and land-use factors characteristic of semi-arid
irrigated environments. During spring, precipitation
and irrigation water dilute and leach salts from the
topsoil, whereas in summer, high evaporation rates
draw moisture up, causing dissolved salts to
crystallise at the surface [23, 24]. Our results
confirm this cycle — the pronounced increase in
salinity from May to August indicates evaporative
salt concentration under hot, dry conditions. By late
autumn, the slight reductions in NDSI in some fields
suggest that cooler temperatures and occasional rain
may have partially re-dissolved surface salts.
However, the fact that many fields remained more
saline in November than in March implies that
seasonal flushing was incomplete. In practice, this
means salts can carry over into the next year, leading

to a gradual buildup if not managed. Thus, even
though salinity may appear to recede each spring,
the summer accumulations pose a recurring stress
that can contribute to long-term soil degradation if
proper remediation is not in place.

Topography and water flow emerge as critical
drivers of the spatial salinity patterns [25]. Fields in
depressions or near the lake plain consistently
showed higher salinity, which is consistent with
water pooling and evaporating in these low-lying
areas, leaving behind salt deposits. In contrast, fields
on slight rises or with better drainage had lower
NDSI values, as excess water (and salt) could more
easily percolate away. This observation corresponds
with well-known behaviour of salts accumulating in
landscape low points. Similar findings have been
reported in other Central Asian studies [8, 9] — for
instance, a regional analysis noted that areas around
irrigation water sources and topographic low points
are at highest risk of salinity escalation. Our field-
scale heterogeneity (where adjacent fields had quite
different salinity levels) also echoes the work of [7],
who found strong spatial variability in salinity due
to differences in soil properties and irrigation
practices even within a small area. Such
comparisons highlight that local factors (micro-
relief, irrigation scheduling, soil texture, etc.) can
cause significant divergence in salinity outcomes,
underlining the importance of site-specific
management strategies. Regarding the efficacy of
the NDSI approach, our use of a simple spectral
index proved effective in capturing surface salt
dynamics.

The temporal trends in NDSI aligned with
expected seasonal salinity changes and qualitatively
matched ground EC data—fields with higher EC
generally showed less negative NDSI values. This
confirms NDSI’s usefulness as a rapid, cost-
effective tool for surface salinity monitoring. Its
sensitivity enabled detection of subtle monthly
variations and emerging salinity hotspots. However,
NDSI reflects only surface conditions and can be
influenced by vegetation or soil moisture. In areas
with dense crop cover, salinity may be
underestimated due to spectral masking. Moreover,
similar reflectance can result from dry soil or
carbonates, reducing specificity. In this study, the
predominantly bare fields enhanced the reliability of
NDSI, though its effectiveness may decline in
heavily vegetated areas.

Another limitation of NDSI is its inability to
detect subsurface salinity—salts beneath a thin
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surface layer may go unnoticed until they re-emerge.
To address this, integrating radar data (e.g.,
Sentinel-1) can improve detection, as radar is
sensitive to surface roughness and moisture and is
unaffected by vegetation cover. Studies in
Kazakhstan confirm that combining optical and
radar imagery enhances salinity mapping accuracy
[6, 7]. Thermal infrared data could also help by
revealing moisture and evaporation patterns linked
to salinity. Additionally, machine learning models
that integrate multiple indices and auxiliary data
(e.g., terrain, climate) can improve prediction.
While NDSI was effective for surface monitoring in
this study, a multi-source, multi-index approach
would offer a more comprehensive assessment.

5. Conclusion

This study provided a detailed spatio-temporal
assessment of soil salinity in irrigated agricultural
lands of Alakol District, Kazakhstan, using time-
series Sentinel-2 imagery. By tracking the NDSI
over the 2024 growing season (March to
November), we identified clear seasonal patterns:
salinity was lowest in spring after winter and early
rains, increased markedly in summer due to
evaporation and irrigation practices, and persisted
into autumn to varying degrees across the landscape.
Spatial analysis further revealed that salinity issues
are concentrated in specific areas — notably, low-
lying fields near the lake basin experienced the
greatest salt accumulation, whereas upland fields
were relatively less affected. Importantly, the
salinity levels observed (as indicated by NDSI)
remained in the slight to moderate range, with no
extreme salinity outbreaks during the study period.
This suggests that while salinisation is a concern, it
may still be at a manageable stage if addressed
promptly. The findings underscore the importance
of monitoring soil salinity over time. A one-off
measurement provides only a snapshot; in contrast,
the temporal approach adopted here captures the
dynamic nature of salinity, revealing when peaks
occur and when remediation would be most needed.
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Although the statistical correlation between the
Normalized Difference Salinity Index (NDSI) and
field-measured electrical conductivity (EC) was
modest, the index effectively captured distinct
seasonal and spatial patterns of soil salinity. Given
the limitations in ground data frequency and
temporal alignment, NDSI values should not be
interpreted in absolute terms. Instead, they should be
regarded as qualitative indicators of salinity
variation, capable of supporting spatiotemporal
monitoring and the identification of emerging
salinity hotspots. Future research should aim to
improve ground validation protocols through more
frequent and temporally aligned EC sampling and
explore the integration of NDSI with complemen-
tary data sources—such as radar imagery, soil
moisture metrics, and topographic parameters —
using hybrid or machine learning-based models to
enhance the accuracy and robustness of salinity
assessments.
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