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A COMPARATIVE STUDY OF LARGE LANGUAGE MODELS
FOR CONCENTRATION PREDICTION OF OIL SLUDGE
WITH NON-STATIONAL HEAT TRANSFER

Abstract. As data accumulates and computational power increases, the performance of large lan-
guage models (LLMs) has been significantly improved, which has promoted them to enter a stage with
rapid development in various research fields. To explore the application capability of LLMs in complex
physical problems, we selected six LLMs for experiments, and took oil sludge as the research object to
predict the concentration based on the temperature at the corresponding location, using the dataset with
dynamic velocity x,=2.5 for training and cross validation. During the experiment, we found that three
of the LLMs had hallucination problems, which were the outputs inconsistent with the actual program.
To evaluate the performance of the random forest (RF) model output by LLMs (RF-L), we also built an
RF model (RF-H), comparing them in five-fold cross validation and an independent test set with x,=5.0,
to verify whether the parameters were potentially optimized or not. Totally, the averages on RMSE and
MSE of RF-L are 25% higher than those of RF-H in cross validation and 9% higher in the test set. In
conclusion, the LLMs are more likely to have hallucination problems, especially in complex nonlinear
data analysis problems such as oil sludge concentration prediction. Meanwhile, LLMs can provide a fast
framework for the data analysis process, and the default parameters can also perform well in a specific
dataset, but their generalization ability is insufficient. In summary, LLMs will be an effective auxiliary
tool for oil sludge industrial upgrading in the future. But now, LLM still has unavoidable risks in reliabil-
ity and robustness for complex dataset, we should make use of it reasonably and carefully, rather than
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depend on it.
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1. Introduction

With the rapid advancement of computing
power, large language models (LLMs) have
expanded from the domain of natural language
processing to the forefront of physical scientific
research owing to their deep neural network
architectures and learning capabilities enabled by
billions of parameters, and ever-increasing amounts
of training corpus [1]. The key advantage of LLMs
lies in their general reasoning ability, which enables
them to extract the interdependencies among
variables in complex systems by analyzing patterns
in massive data. In addition, LLMs have great
potential in processing multimodal data and cross-
domain tasks. These properties make them exhibit
great development prospects in  resolving
engineering challenges traditionally reliant on
numerical simulation or empirical formulations,
such as material property prediction [2-3] and
mechanical system modeling [4], because this
capability offers a new path for knowledge

© 2025 Al-Farabi Kazakh National University

discovery and automated modeling,
repetitive mental work.

Oil sludge is a crucial byproduct throughout the
entire oil industry lifecycle, including production,
processing, and transportation [5]. Composed of
diverse constituents, including organic compounds,
heavy metals, and other hazardous substances, oil
sludge contains components that pose significant
risks to environmental ecosystems and human health.
Hence, improper management of such sludge can
lead to severe ecological degradation and public
health hazards [6]. The methodologies for treating
oil sludge can be broadly -categorized into
incineration, chemical extraction, and pyrolysis.
Incineration, on one hand, can effectively reduce oil
sludge volume through combustion, which is
economical and efficient, yet it introduces
challenges in controlling air pollution generated
during the process [7]. On the other hand, chemical
extraction can efficiently recycle valuable
compounds from oil sludge, however, it requires a
large amount of auxiliary solvents, which hinder its

reducing
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widespread adoption due to high cost[8]. In contrast,
pyrolysis offers a thermochemical approach that
decomposes oil sludge into coke tar and gas
fractions, thereby enabling comprehensive resource
utilization of the waste matrix. However, due to the
multiphase coupling across multiple physical fields
inherent in the pyrolysis process, this method
demands precise control of the temperature to
achieve the desired composition of oil sludge

products [5]. Current research on pyrolysis
temperature has predominantly focused on
experimental investigations [9-10] and

computational simulations [11-12], both of which
entail substantial investments in time, human
resources, and material costs. Machine learning (ML)
methodologies have been explored for optimizing
the oil sludge pyrolysis process [13], but the
substantial ~ regional variability in  sludge
composition necessitates frequent adjustments to
feature engineering and hyperparameter
configurations, which require heavy domain
expertise. In addition, traditional ML models require
a large amount of labeled data, while dynamic
experimental data in sludge treatment are usually
scarce and expensive, which thus hinders their
widespread application. Leveraging LLMs to
provide adaptive guidance on model selection and
parameter tuning could potentially enhance the
efficiency and consistency of pyrolysis outcomes by
integrating real-time contextual information.
However, the application of LLMs in
unstructured physical problems is still in the
exploratory stage, especially in scenarios involving
multi-physics coupling. Sun et al. (2024) [14]
proposed a Chat-IMSHT, an auxiliary system based
on LLMs, for the multi-physics field coupling
process of steel heat treatment. Duan et al. (2024)
[15] applied LLMs to the exploration and
development process of Shengli Oilfield in China,
which has been tested on tens of thousands of people.
Pan et al. (2024) [16] constructed an efficient
coupling method for analyzing well profiles and
reservoir performance based on LLMs, improving
the efficiency of digital management of traditional
oil wells. Al et al. (2025) [17] established an LLM-
based framework to integrate drilling data similarity
and user queries into prompts to generate code,
improving the quality of real-time decision making.
While these studies demonstrate preliminary
applications of LLMs in oil and gas fields, their
reliability and generalizability remain insufficiently
validated, with a notable lack of systematic research.

Currently, with the widespread use of LL.Ms, cross-
disciplinary research has been conducted in fields
such as education [18], building energy[19], and
medicine [20] to evaluate the performance and
reliability of LLMs in these fields. Since different
LLMs (e.g., Chat, DeepSeek, and Doubao) differ in
architectural design details, pre-training data, and
inference strategies, empirical studies are needed to
clarify their adaptability and performance in multi-
physics domain problems.

To address this gap, this article investigates the
feasibility of general artificial intelligence for
scientific tasks in oil sludge management by
leveraging LLMs to predict sludge composition at
varying temperatures. We focus on the following
research objectives:

1. The ability of large language models (LLMs)
to propose targeted modeling strategies based on
input prompts and datasets.

2. The investigation into the presence of
hallucination issues in LLM-generated outputs
within the context of oil sludge modeling problems.

3. The evaluation of the performance of
algorithmic solutions provided by LLMs for oil
sludge concentration prediction tasks.

Six top models from the United States and China
were selected for comparative analysis. Prompts
were designed to elicit algorithm recommendations
and predictions from each model, with outputs
recorded for subsequent validation. To assess LLMs'
effectiveness, we manually implemented the
recommended algorithms and compared their
performance against benchmark results. This work
provides the first quantitative assessment of LLMs'
accuracy and reliability in oil sludge analysis,
offering critical insights to mitigate risks associated
with blind LLMs adoption in engineering contexts.
This article is organized as follows: The Datasets,
methods, and how they were used are described in
Section 2. The results with the 6 different LLMs on
the different sets are discussed and compared to
artificial RF in Section 3. We conclude in Section 4.

2. Datasets and methods

In this section, we describe the workflow used
in this article to evaluate the performance of LLMs
for oil sludge. We also give an overview of the oil
sludge datasets used to evaluate LL.Ms to elaborate
on the simulation for the mathematical process. In
addition, the basic theory of LLMs architecture is
explained in detail, which is called transformer.
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Since RF is recommended by most of the LLMs, we
also gave an overview of RF. This research aims to
make a comprehensive comparison among
advanced LLMs so that research works based on
LLMs have a well understanding of the benefits and
risks in the future. The following subsections
provide an in-depth introduction of the workflow,
transformer and datasets used in our experiments.

2.1. Workflow

The whole workflow for evaluating LLMs in
predicting oil sludge concentration integrates
simulation dataset construction, multi-model
comparison, and assessment. The datasets including
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spatial variations of sludge vapor concentration and
temperature across locations, were imported into the
LLMs by API with prompts requesting to predict
concentrations based on location and temperature
features, and self-evaluate the results with metrics
RMSE and R*. LLM’s code generation and sequence
processing capabilities allow us to map positions
and temperatures to concentration outputs without
manual feature engineering. To evaluate the results
output by LLMs, a human-optimized baseline model
is constructed, serving as a reference to quantify the
LLMs’ performance and reliability. The workflow is
shown in Figure 1.
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Figure 1 — Workflow of comparative experiment

According to Chatbot Arena [21], a leaderboard
platform developed by the University of California,
Berkeley, the top ten performing large language
models (LLMs) are predominantly from either the
United States or China. Based on this observation,
we selected six representative models for our

Table 1 - Overview of LLMs

experiment, with an equal distribution of three
models from each country. In the experiment, we
employed identical prompts and unified datasets,
while manually implementing the same sludge
concentration prediction models to systematically
compare the outputs across different LLMs.

LLMs Organization Release time
Grok 3 XAl 18/02/2025
Chat GPT40 OpenAl 14/05/2024
Gemini-2.0 Flash Google 05/02/2025
Qwen2.5-max Alibaba 01/03/2025
Dou Bao ByteDance 22/01/2025
Deep Seek-R1 Deep Seek 20/01/2025
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2.2 Dataset

This research utilized two simulated datasets
representing distinct types of oil sludge, which were
used to train and validate with LLMs. As
documented in prior research[22], the simulated
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where m is the porosity of the oil sludge. T and C
are the dimensionless temperature and concentration
at location horizontal direction x and vertical
direction y. The U and V are the velocities in the x
and y directions. Pr, Re and Sc are Prandtl number,
Reynolds number and Schmid number respectively,
which are related to physical properties. For initial
condition, C¢=1, Ty = 250, Ly = Ly = 1. At the
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datasets were generated using the following Eq (1)
and Eq (2) mathematical formulations. Eq (1)
characterizes the mathematical relationship between
concentration and temperature in space, and Eq (2)
describes the distribution of concentration in space.
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same time, we used different velocity pg = 2.5 and
Ke = 5.0 in simulation to represent different kinds of
oil sludge. Each of the two datasets contains 400
samples, and each sample consists of four
features: X, Y denote the dimensionless position
information, T denotes the dimensionless
temperature of oil sludge, C denotes the
dimensionless concentration of liquid in oil sludge.
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Figure 2 — Temperature and concentration of oil sludge
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2.3 Transformer and Random Forest

In general, the architecture of most LLMs is
rooted in the Transformer framework. As shown in
Figure 3, the Transformer consists of two core
components: the encoder and decoder. The encoder
is designed to extract contextual features from large-
scale datasets, identifying intricate relationships
within input texts. Human-labeled target variables
are fed into the decoder to analyze contextual
information, while the encoder processes raw input
data to capture representations. The vector outputs
from both modules are subsequently integrated to
predict class probabilities or continuous values
based on input sequences. In LLM architectures,
text is typically tokenized into subword units, where

Positional
Encoding

each token can represent a word, subword, or other
data unit depending on the task. In Transformer, the
key index is attention values, and data are passed in
the form of vectors or matrices. Therefore, clear
prompts are considered to be key in numerical tasks.
The decoder makes text predictions based on the
input prompts, and the steps of data processing are
based on the output predictions. The effectiveness of
LLMs can be evaluated by their ability to analyze
dataset characteristics through prompted inputs, a
process that underscores their logical reasoning
capabilities. Additionally, whether the model
generates sequence-based predictions or executable
code serves as a key metric for assessing its
problem-solving versatility in engineering contexts.
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Figure 3 — The structure of Transformer

Random Forest (RF) is an ensemble learning
algorithm widely applied in classification and
regression tasks. It has been proven that RF
performed well in fields of physics, such as
concentration[23], heat transfer[24]. Composed of
multiple decision trees, RF constructs each tree by
selecting nodes with the highest information gain for
splitting, a process that continues until the number
of samples per node falls below a predefined
threshold or the maximum tree depth is reached. The
result is the average of all decision trees outputs. For
regression tasks, the final prediction is derived by
averaging the outputs of all constituent trees, while
classification tasks employ majority voting. This
ensemble structure endows RF with robust
generalization capabilities and resistance to

overfitting. In this article, RF serves as a benchmark
model to compare against the predictive
performance of LLMs.

3. Results

As mentioned above, we prepared two datasets
ur = 2.5 and pg = 5.0. Then, 80% dataset with ps =
2.5 served as the training set, and the rest of 20%
dataset served as the cross-validation set. The
dataset pf = 5.0 served as the test set. Here we use
RMSE and R? as the metrics, in which RMSE
measures the degree of error, and R’ shows the
goodness of fit. It should be noted that the prompt
we offered was "divide the uf2.5 file into training set
and validation set in a ratio of 8:2, and the uf5.0 file
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is the test set. Predict the concentration based on the
position information (x, y) and temperature, and
calculate the RMSE and R2 at the same time."

n

1 ~

RMSE = HZ(Yi -Y)?2 (3)
i=1

RZ =1- {1=1(Yi - f])z (4)

where Y, is the predicted values, and Y is the
average of target values set. At the same time, we
required LLMs to give corresponding calculation
codes so that we can verify if hallucination existed.

3.1 Hallucination Analysis

Hallucination in LLMs refers to the generation of
non-factual or unreliable outputs, often arising from
the complex architecture of LLMs, comprising
pretraining, fine-tuning, and millions to billions of
parameters, which can lead to erroneous reasoning,
particularly in numerical tasks. In this section, to

Table 2 — Comparison of Different LLMs for Prediction

systematically ~ evaluate the presence of
hallucinations, we re-ran the code locally to
compute the actual results. Hallucination is defined
here as predictions output by LLMs that differ from
the local code results. Among the evaluated LLMs,
Grok 3, Qwen2.5-max, Deep Seek-R1 and Chat
GPT4 all predicted based on RF with same
hyperparameters, but three of them have
hallucination problems, only the local code running
results of Chat GPT4o are consistent with the cloud
calculation. This suggests hallucinatory LLMs may
not have actually processed data according to the
specified algorithms during inference but instead
produced fabricated outcomes. Conversely, the
remaining LLMs relied on linear regression models,
indicating that all observed hallucinations were
associated with RF-based predictions. We
hypothesize this stems from LLMs’ -current
limitations in accurately representing complex
machine learning architectures like RF. In summary,
the results of Chat GPT40, Gemini-2.0 Flash, and
Qwen2.5-max aligned with local calculations
without evidence of hallucination, underscoring the
critical role of algorithmic fidelity in LLM-driven
scientific tasks.

LLMs RMIéI;:MS resultls{z R;ggaEl code resullt{sz Hallucination Model
Grok 3 0.0615 0.9908 0.0292 0.9431 True RF
Chat GPT4o 0.0292 0.9431 0.0292 0.9431 False RF
Gemini-2.0 Flash 0.0555 0.7952 0.0555 0.7952 False LR
Qwen2.5-max 0.0111 0.9876 0.0292 0.9431 True RF
Dou Bao 0.0555 0.7952 0.0555 0.7952 False LR
Deep Seek-R1 0.0214 0.9720 0.0292 0.9431 True RF

3.2 Performance Analysis

According to the outputs by LLMs, the solutions
for prediction can be categorized into two types: one
was linear regression (LR), and the other was RF. It
can be inferred that the LLMs providing the RF
algorithm, such as Grok 3, Chat GPT40, Qwen2.5-
max and Deep Seek-R1, have stronger reasoning
and analysis capabilities for oil sludge data, because
RF is more suitable for nonlinear data structures, and
the LLMs mentioned above adopted a targeted
strategy. In contrast, the Gemini-2.0 Flash and Dou
Bao used LR to fit a multivariate linear function
based on the least squares method, which predicted
the result with RMSE 0.0555 and R* 0.7952. Given

that the linear model cannot describe the nonlinear
relation between concentration and temperature in
space for oil sludge, we don’t further analyze LR in
this article. Then, we checked the code and found
that all of the LLMs with RF didn’t tune or optimize
hyperparameters explicitly, but rather set same fixed
values that is n_estimator = 100 and unlimitted
deepth. In order to verify RF output by LLMs,
marked as RF-L, we built an RF model ourselves,
marked as RF-H, and compare the results between
RF-L and RF-H to check the parameters given by
LLMs were based on potential calculation or default
value. In RF-H, we used grid search to find the best
parameters, and the dataset with pf = 2.5 was
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divided into the training set, validation set.
Likewise, we also used the dataset with py = 5.0 as
the testing set. As shown in Figure 4, the mean
square error (MSE) stopped decreasing after
max_deepth = 10. And the lowest MSE was at
n_estimator 220. As a result, we chose
max_deepth = 10 and n_estimator = 220.

Due to the parameter in RF-L was n_estimator =
100, and the max_deepth was the default setting that
is keeping splitting unless the number of samples in

250 200

150

nodes is less than two or the impurity of node stops
decreasing, which inherently risks overfitting. To
systematically evaluate this, we used 5-fold cross
validation to compare the performance of RF-F and
RF-H in dataset pg = 2.5 which was divided into
80% for training and 20% for validation with 5-fold
cross validation to determine whether there is
overfitting. Concurrently, the dataset ug = 5.0 was
used as a completely independent dataset to test the
performance difference between RF-F and RF-H.

0.00063
0.00062
0.00061

0.00060

Mean square error
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0.00058

100 50

n_estimators

Figure 4 — The grid search of RF-H

3

(a) Metrics of RF-H (b) Metrics of RF-L

Figure 5 — The comparison of RF-H and RF-L

As shown in Figure 5, RF-H performed almost
as great as RF-L, or even slightly worse on the
training set as a result of the default max deepth.
However, RF-H performed better in cross
validation, no matter MSE, RMSE or R%. However,
RF-H performed better on the cross validation, no

matter MSE, RMSE or R’ indicating that the
manually tuned RF-H has better generalization
ability. Apparently, RF-L was trained to overfit on
the training set with pg = 2.5, because it performs
better than RF-H on the training set, but worse on
the cross-validation and test sets. The test set with
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e = 5.0 is absolutely independent, RF-H also
performed better accuracy with lower 12.5% MSE
and 11.9% RMSE than RF-L. As shown in Figure 6,
both RF-H and RF-L demonstrated reasonable trend
consistency, but there was a difference in the
accuracy of the predicted values, with RF-L being
closer to the true value. Totally, the average on
RMSE and MSE of RF-L is 25% higher than that of
RF-H on the cross-validation and 9% higher on the
test set. The above results confirm that the RF-L

hyperparameters of LLMs are not optimized, and
n_estimator = 100 is the default parameter given.
Although the current mainstream LLMs can
determine the relationship between datasets and use
algorithms that match them, their parameter selec-
tion processes remain suboptimal for improvement
in the algorithm parameter selection process.
Compared to manually designed algorithms, the
algorithm output by LLMs lacks adaptive parameter
tuning and robust generalization capabilities.
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Figure 6 — The result of RF-L and RF-H

4. Conclusion

In this article, we explored the performance of
LLMs for the prediction task of oil sludge
concentration by temperature, which is a typical
problem of complicated nonlinear regression in the
traditional engineering field. We compare six
advanced LLMs, and further qualify the difference
between LLMs and artificial model, showing that
the LLMs are more likely to have hallucination
problem during complex nonlinear data modeling
such as oil sludge concentration prediction, which is
due to the limitations of the corpus and the lack of
explicit knowledge in the process of building LLMs.
Therefore, when using the LLMs to calculate
complex engineering problems, special attention
should be paid to the lack of reliability of the
answers provided by LLMs at this stage. Moreover,
another conclusion is that LLMs can give a default

10

parameter when building a mathematical model
based on their large knowledge database, without
optimization for parameters. In order to further
clarify the difference between LLMs and artificial
models, by comparing RF-H and RF-L, the results
show that the average on RMSE and MSE of RF-L
in cross validation are 25% higher than RF-H, and
9% higher on the test set. LLMs can provide a fast
framework for the data analysis process, and the
default parameters can also perform well in a
specific dataset but their generalization ability is
insufficient.

In summary, LLM, as an important development
direction of generative artificial intelligence, will be
an effective auxiliary tool for industrial upgrading in
the future. But now, LLM still has unavoidable risks
in reliability and robustness, we should make use of
it reasonably and carefully, rather than depend on it
absolutely. It should be noted that this paper still has
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certain limitations in terms of dataset size and
specific fields. In the future, we will further analyze
the role of explicit knowledge in LLM and expand
the data volume and application fields.
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