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Abstract. As data accumulates and computational power increases, the performance of large lan-
guage models (LLMs) has been significantly improved, which has promoted them to enter a stage with 
rapid development in various research fields. To explore the application capability of LLMs in complex 
physical problems, we selected six LLMs for experiments, and took oil sludge as the research object to 
predict the concentration based on the temperature at the corresponding location, using the dataset with 
dynamic velocity μf=2.5 for training and cross validation. During the experiment, we found that three 
of the LLMs had hallucination problems, which were the outputs inconsistent with the actual program. 
To evaluate the performance of the random forest (RF) model output by LLMs (RF-L), we also built an 
RF model (RF-H), comparing them in five-fold cross validation and an independent test set with μf=5.0, 
to verify whether the parameters were potentially optimized or not. Totally, the averages on RMSE and 
MSE of RF-L are 25% higher than those of RF-H in cross validation and 9% higher in the test set. In 
conclusion, the LLMs are more likely to have hallucination problems, especially in complex nonlinear 
data analysis problems such as oil sludge concentration prediction. Meanwhile, LLMs can provide a fast 
framework for the data analysis process, and the default parameters can also perform well in a specific 
dataset, but their generalization ability is insufficient. In summary, LLMs will be an effective auxiliary 
tool for oil sludge industrial upgrading in the future. But now, LLM still has unavoidable risks in reliabil-
ity and robustness for complex dataset, we should make use of it reasonably and carefully, rather than 
depend on it.
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1. Introduction 
 
With the rapid advancement of computing 

power, large language models (LLMs) have 
expanded from the domain of natural language 
processing to the forefront of physical scientific 
research owing to their deep neural network 
architectures and learning capabilities enabled by 
billions of parameters, and ever-increasing amounts 
of training corpus [1]. The key advantage of LLMs 
lies in their general reasoning ability, which enables 
them to extract the interdependencies among 
variables in complex systems by analyzing patterns 
in massive data. In addition, LLMs have great 
potential in processing multimodal data and cross-
domain tasks. These properties make them exhibit 
great development prospects in resolving 
engineering challenges traditionally reliant on 
numerical simulation or empirical formulations, 
such as material property prediction [2-3] and 
mechanical system modeling [4], because this 
capability offers a new path for knowledge 

discovery and automated modeling, reducing 
repetitive mental work.  

Oil sludge is a crucial byproduct throughout the 
entire oil industry lifecycle, including production, 
processing, and transportation [5]. Composed of 
diverse constituents, including organic compounds, 
heavy metals, and other hazardous substances, oil 
sludge contains components that pose significant 
risks to environmental ecosystems and human health. 
Hence, improper management of such sludge can 
lead to severe ecological degradation and public 
health hazards [6]. The methodologies for treating 
oil sludge can be broadly categorized into 
incineration, chemical extraction, and pyrolysis. 
Incineration, on one hand, can effectively reduce oil 
sludge volume through combustion, which is 
economical and efficient, yet it introduces 
challenges in controlling air pollution generated 
during the process [7]. On the other hand, chemical 
extraction can efficiently recycle valuable 
compounds from oil sludge, however, it requires a 
large amount of auxiliary solvents, which hinder its 
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widespread adoption due to high cost[8]. In contrast, 
pyrolysis offers a thermochemical approach that 
decomposes oil sludge into coke tar and gas 
fractions, thereby enabling comprehensive resource 
utilization of the waste matrix. However, due to the 
multiphase coupling across multiple physical fields 
inherent in the pyrolysis process, this method 
demands precise control of the temperature to 
achieve the desired composition of oil sludge 
products [5]. Current research on pyrolysis 
temperature has predominantly focused on 
experimental investigations [9-10] and 
computational simulations [11-12], both of which 
entail substantial investments in time, human 
resources, and material costs. Machine learning (ML) 
methodologies have been explored for optimizing 
the oil sludge pyrolysis process [13], but the 
substantial regional variability in sludge 
composition necessitates frequent adjustments to 
feature engineering and hyperparameter 
configurations, which require heavy domain 
expertise. In addition, traditional ML models require 
a large amount of labeled data, while dynamic 
experimental data in sludge treatment are usually 
scarce and expensive, which thus hinders their 
widespread application. Leveraging LLMs to 
provide adaptive guidance on model selection and 
parameter tuning could potentially enhance the 
efficiency and consistency of pyrolysis outcomes by 
integrating real-time contextual information. 

However, the application of LLMs in 
unstructured physical problems is still in the 
exploratory stage, especially in scenarios involving 
multi-physics coupling. Sun et al. (2024) [14] 
proposed a Chat-IMSHT, an auxiliary system based 
on LLMs, for the multi-physics field coupling 
process of steel heat treatment. Duan et al. (2024) 
[15] applied LLMs to the exploration and 
development process of Shengli Oilfield in China, 
which has been tested on tens of thousands of people. 
Pan et al. (2024) [16] constructed an efficient 
coupling method for analyzing well profiles and 
reservoir performance based on LLMs, improving 
the efficiency of digital management of traditional 
oil wells. Al et al. (2025) [17] established an LLM-
based framework to integrate drilling data similarity 
and user queries into prompts to generate code, 
improving the quality of real-time decision making. 
While these studies demonstrate preliminary 
applications of LLMs in oil and gas fields, their 
reliability and generalizability remain insufficiently 
validated, with a notable lack of systematic research. 

Currently, with the widespread use of LLMs, cross-
disciplinary research has been conducted in fields 
such as education [18], building energy[19], and 
medicine [20] to evaluate the performance and 
reliability of LLMs in these fields. Since different 
LLMs (e.g., Chat, DeepSeek, and Doubao) differ in 
architectural design details, pre-training data, and 
inference strategies, empirical studies are needed to 
clarify their adaptability and performance in multi-
physics domain problems.  

To address this gap, this article investigates the 
feasibility of general artificial intelligence for 
scientific tasks in oil sludge management by 
leveraging LLMs to predict sludge composition at 
varying temperatures. We focus on the following 
research objectives: 

1. The ability of large language models (LLMs) 
to propose targeted modeling strategies based on 
input prompts and datasets. 

2. The investigation into the presence of 
hallucination issues in LLM-generated outputs 
within the context of oil sludge modeling problems. 

3. The evaluation of the performance of 
algorithmic solutions provided by LLMs for oil 
sludge concentration prediction tasks. 

Six top models from the United States and China 
were selected for comparative analysis. Prompts 
were designed to elicit algorithm recommendations 
and predictions from each model, with outputs 
recorded for subsequent validation. To assess LLMs' 
effectiveness, we manually implemented the 
recommended algorithms and compared their 
performance against benchmark results. This work 
provides the first quantitative assessment of LLMs' 
accuracy and reliability in oil sludge analysis, 
offering critical insights to mitigate risks associated 
with blind LLMs adoption in engineering contexts. 
This article is organized as follows: The Datasets, 
methods, and how they were used are described in 
Section 2. The results with the 6 different LLMs on 
the different sets are discussed and compared to 
artificial RF in Section 3. We conclude in Section 4. 

 
2. Datasets and methods 
 
In this section, we describe the workflow used 

in this article to evaluate the performance of LLMs 
for oil sludge. We also give an overview of the oil 
sludge datasets used to evaluate LLMs to elaborate 
on the simulation for the mathematical process. In 
addition, the basic theory of LLMs architecture is 
explained in detail, which is called transformer. 
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Since RF is recommended by most of the LLMs, we 
also gave an overview of RF. This research aims to 
make a comprehensive comparison among 
advanced LLMs so that research works based on 
LLMs have a well understanding of the benefits and 
risks in the future. The following subsections 
provide an in-depth introduction of the workflow, 
transformer and datasets used in our experiments. 

2.1. Workflow 
The whole workflow for evaluating LLMs in 

predicting oil sludge concentration integrates 
simulation dataset construction, multi-model 
comparison, and assessment. The datasets including  
 

spatial variations of sludge vapor concentration and 
temperature across locations, were imported into the 
LLMs by API with prompts requesting to predict 
concentrations based on location and temperature 
features, and self-evaluate the results with metrics 
RMSE and R2. LLM’s code generation and sequence 
processing capabilities allow us to map positions 
and temperatures to concentration outputs without 
manual feature engineering. To evaluate the results 
output by LLMs, a human-optimized baseline model 
is constructed, serving as a reference to quantify the 
LLMs’ performance and reliability. The workflow is 
shown in Figure 1.
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Figure 1 – Workflow of comparative experiment 

 
 

According to Chatbot Arena [21], a leaderboard 
platform developed by the University of California, 
Berkeley, the top ten performing large language 
models (LLMs) are predominantly from either the 
United States or China. Based on this observation, 
we selected six representative models for our 

experiment, with an equal distribution of three 
models from each country. In the experiment, we 
employed identical prompts and unified datasets, 
while manually implementing the same sludge 
concentration prediction models to systematically 
compare the outputs across different LLMs. 

 
 

Table 1 – Overview of LLMs  
 

LLMs Organization Release time 
Grok 3 xAI 18/02/2025 

Chat GPT4o OpenAI 14/05/2024 
Gemini-2.0 Flash Google 05/02/2025 

Qwen2.5-max Alibaba 01/03/2025 
Dou Bao ByteDance 22/01/2025 

Deep Seek-R1 Deep Seek 20/01/2025 
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2.2 Dataset 
This research utilized two simulated datasets 

representing distinct types of oil sludge, which were 
used to train and validate with LLMs. As 
documented in prior research[22], the simulated 

datasets were generated using the following Eq (1) 
and Eq (2) mathematical formulations. Eq (1) 
characterizes the mathematical relationship between 
concentration and temperature in space, and Eq (2) 
describes the distribution of concentration in space. 

 
 

m
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where m is the porosity of the oil sludge. T� and C� 
are the dimensionless temperature and concentration 
at location horizontal direction x  and vertical 
direction y. The u�  and v� are the velocities in the x 
and y directions. Pr, Re and Sc are Prandtl number, 
Reynolds number and Schmid number respectively, 
which are related to physical properties. For initial 
condition, Cf =1, Tf = 250 , LX = LY = 1 . At the 

same time, we used different velocity μf = 2.5 and 
μf = 5.0 in simulation to represent different kinds of 
oil sludge. Each of the two datasets contains 400 
samples, and each sample consists of four 
features: X� , Y� denote the dimensionless position 
information, T�  denotes the dimensionless 
temperature of oil sludge, C�  denotes the 
dimensionless concentration of liquid in oil sludge. 

 
 

 
 

Figure 2 – Temperature and concentration of oil sludge 
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2.3 Transformer and Random Forest  
In general, the architecture of most LLMs is 

rooted in the Transformer framework. As shown in 
Figure 3, the Transformer consists of two core 
components: the encoder and decoder. The encoder 
is designed to extract contextual features from large-
scale datasets, identifying intricate relationships 
within input texts. Human-labeled target variables 
are fed into the decoder to analyze contextual 
information, while the encoder processes raw input 
data to capture representations. The vector outputs 
from both modules are subsequently integrated to 
predict class probabilities or continuous values 
based on input sequences. In LLM architectures, 
text is typically tokenized into subword units, where 

each token can represent a word, subword, or other 
data unit depending on the task. In Transformer, the 
key index is attention values, and data are passed in 
the form of vectors or matrices. Therefore, clear 
prompts are considered to be key in numerical tasks. 
The decoder makes text predictions based on the 
input prompts, and the steps of data processing are 
based on the output predictions. The effectiveness of 
LLMs can be evaluated by their ability to analyze 
dataset characteristics through prompted inputs, a 
process that underscores their logical reasoning 
capabilities. Additionally, whether the model 
generates sequence-based predictions or executable 
code serves as a key metric for assessing its 
problem-solving versatility in engineering contexts. 
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Figure 3 – The structure of Transformer 
 
 

Random Forest (RF) is an ensemble learning 
algorithm widely applied in classification and 
regression tasks. It has been proven that RF 
performed well in fields of physics, such as 
concentration[23], heat transfer[24]. Composed of 
multiple decision trees, RF constructs each tree by 
selecting nodes with the highest information gain for 
splitting, a process that continues until the number 
of samples per node falls below a predefined 
threshold or the maximum tree depth is reached. The 
result is the average of all decision trees outputs. For 
regression tasks, the final prediction is derived by 
averaging the outputs of all constituent trees, while 
classification tasks employ majority voting. This 
ensemble structure endows RF with robust 
generalization capabilities and resistance to 

overfitting. In this article, RF serves as a benchmark 
model to compare against the predictive 
performance of LLMs.  

 
3. Results 
 
As mentioned above, we prepared two datasets 

μf = 2.5 and μf = 5.0. Then, 80% dataset with μf =
2.5 served as the training set, and the rest of 20% 
dataset served as the cross-validation set. The 
dataset μf = 5.0 served as the test set. Here we use 
RMSE and R2 as the metrics, in which RMSE 
measures the degree of error, and R2 shows the 
goodness of fit. It should be noted that the prompt 
we offered was ''divide the uf2.5 file into training set 
and validation set in a ratio of 8:2, and the uf5.0 file 
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is the test set. Predict the concentration based on the 
position information (x, y) and temperature, and 
calculate the RMSE and R2 at the same time." 

 

RMSE = �
1
n
�(Yi − Yı�)2
n

i=1

 (3) 

 

R2 = 1 −
∑ (Yi − Yı�)2n
i=1
∑ (Yi − Y�)2n
i=1

 
 

(4) 

 
where Yı�  is the predicted values, and Y�  is the 
average of target values set. At the same time, we 
required LLMs to give corresponding calculation 
codes so that we can verify if hallucination existed.  

3.1 Hallucination Analysis 
Hallucination in LLMs refers to the generation of 

non-factual or unreliable outputs, often arising from 
the complex architecture of LLMs, comprising 
pretraining, fine-tuning, and millions to billions of 
parameters, which can lead to erroneous reasoning, 
particularly in numerical tasks. In this section, to 

systematically evaluate the presence of 
hallucinations, we re-ran the code locally to 
compute the actual results. Hallucination is defined 
here as predictions output by LLMs that differ from 
the local code results. Among the evaluated LLMs, 
Grok 3, Qwen2.5-max, Deep Seek-R1 and Chat 
GPT4 all predicted based on RF with same 
hyperparameters, but three of them have 
hallucination problems, only the local code running 
results of Chat GPT4o are consistent with the cloud 
calculation. This suggests hallucinatory LLMs may 
not have actually processed data according to the 
specified algorithms during inference but instead 
produced fabricated outcomes. Conversely, the 
remaining LLMs relied on linear regression models, 
indicating that all observed hallucinations were 
associated with RF-based predictions. We 
hypothesize this stems from LLMs’ current 
limitations in accurately representing complex 
machine learning architectures like RF. In summary, 
the results of Chat GPT4o, Gemini-2.0 Flash, and 
Qwen2.5-max aligned with local calculations 
without evidence of hallucination, underscoring the 
critical role of algorithmic fidelity in LLM-driven 
scientific tasks. 

 
 

Table 2 – Comparison of Different LLMs for Prediction 
 

LLMs LLMs results local code results Hallucination Model RMSE R2 RMSE R2 
Grok 3 0.0615 0.9908 0.0292 0.9431 True RF 

Chat GPT4o 0.0292 0.9431 0.0292 0.9431 False RF 
Gemini-2.0 Flash 0.0555 0.7952 0.0555 0.7952 False LR 

Qwen2.5-max 0.0111 0.9876 0.0292 0.9431 True RF 
Dou Bao 0.0555 0.7952 0.0555 0.7952 False LR 

Deep Seek-R1 0.0214 0.9720 0.0292 0.9431 True RF 
 
 
3.2 Performance Analysis 
According to the outputs by LLMs, the solutions 

for prediction can be categorized into two types: one 
was linear regression (LR), and the other was RF. It 
can be inferred that the LLMs providing the RF 
algorithm, such as Grok 3, Chat GPT4o, Qwen2.5-
max and Deep Seek-R1, have stronger reasoning 
and analysis capabilities for oil sludge data, because 
RF is more suitable for nonlinear data structures, and 
the LLMs mentioned above adopted a targeted 
strategy. In contrast, the Gemini-2.0 Flash and Dou 
Bao used LR to fit a multivariate linear function 
based on the least squares method, which predicted 
the result with RMSE 0.0555 and R2 0.7952. Given 

that the linear model cannot describe the nonlinear 
relation between concentration and temperature in 
space for oil sludge, we don’t further analyze LR in 
this article. Then, we checked the code and found 
that all of the LLMs with RF didn’t tune or optimize 
hyperparameters explicitly, but rather set same fixed 
values that is n_estimator = 100 and unlimitted 
deepth. In order to verify RF output by LLMs, 
marked as RF-L, we built an RF model ourselves, 
marked as RF-H, and compare the results between 
RF-L and RF-H to check the parameters given by 
LLMs were based on potential calculation or default 
value. In RF-H, we used grid search to find the best 
parameters, and the dataset with μf = 2.5  was 
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divided into the training set, validation set. 
Likewise, we also used the dataset with μf = 5.0 as 
the testing set. As shown in Figure 4, the mean 
square error (MSE) stopped decreasing after 
max_deepth = 10. And the lowest MSE was at 
n_estimator = 220. As a result, we chose 
max_deepth = 10 and n_estimator = 220. 

Due to the parameter in RF-L was n_estimator = 
100, and the max_deepth was the default setting that 
is keeping splitting unless the number of samples in 

nodes is less than two or the impurity of node stops 
decreasing, which inherently risks overfitting. To 
systematically evaluate this, we used 5-fold cross 
validation to compare the performance of RF-F and 
RF-H in dataset μf = 2.5  which was divided into 
80% for training and 20% for validation with 5-fold 
cross validation to determine whether there is 
overfitting. Concurrently, the dataset μf = 5.0 was 
used as a completely independent dataset to test the 
performance difference between RF-F and RF-H. 

 
 

 
 

Figure 4 – The grid search of RF-H 
 

 
(a) Metrics of RF-H (b) Metrics of RF-L 

 
Figure 5 – The comparison of RF-H and RF-L 

 
 

As shown in Figure 5, RF-H performed almost 
as great as RF-L, or even slightly worse on the 
training set as a result of the default max_deepth. 
However, RF-H performed better in cross 
validation, no matter MSE, RMSE or R2. However, 
RF-H performed better on the cross validation, no 

matter MSE, RMSE or R2, indicating that the 
manually tuned RF-H has better generalization 
ability. Apparently, RF-L was trained to overfit on 
the training set with μf = 2.5, because it performs 
better than RF-H on the training set, but worse on 
the cross-validation and test sets. The test set with 
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μf = 5.0  is absolutely independent, RF-H also 
performed better accuracy with lower 12.5% MSE 
and 11.9% RMSE than RF-L. As shown in Figure 6, 
both RF-H and RF-L demonstrated reasonable trend 
consistency, but there was a difference in the 
accuracy of the predicted values, with RF-L being 
closer to the true value. Totally, the average on 
RMSE and MSE of RF-L is 25% higher than that of 
RF-H on the cross-validation and 9% higher on the 
test set. The above results confirm that the RF-L 

hyperparameters of LLMs are not optimized, and 
n_estimator = 100 is the default parameter given. 
Although the current mainstream LLMs can 
determine the relationship between datasets and use 
algorithms that match them, their parameter selec-
tion processes remain suboptimal for improvement 
in the algorithm parameter selection process. 
Compared to manually designed algorithms, the 
algorithm output by LLMs lacks adaptive parameter 
tuning and robust generalization capabilities. 

 
 

 
 

Figure 6 – The result of RF-L and RF-H 
 
 

4. Conclusion 
 
In this article, we explored the performance of 

LLMs for the prediction task of oil sludge 
concentration by temperature, which is a typical 
problem of complicated nonlinear regression in the 
traditional engineering field. We compare six 
advanced LLMs, and further qualify the difference 
between LLMs and artificial model, showing that 
the LLMs are more likely to have hallucination 
problem during complex nonlinear data modeling 
such as oil sludge concentration prediction, which is 
due to the limitations of the corpus and the lack of 
explicit knowledge in the process of building LLMs. 
Therefore, when using the LLMs to calculate 
complex engineering problems, special attention 
should be paid to the lack of reliability of the 
answers provided by LLMs at this stage. Moreover, 
another conclusion is that LLMs can give a default 

parameter when building a mathematical model 
based on their large knowledge database, without 
optimization for parameters. In order to further 
clarify the difference between LLMs and artificial 
models, by comparing RF-H and RF-L, the results 
show that the average on RMSE and MSE of RF-L 
in cross validation are 25% higher than RF-H, and 
9% higher on the test set. LLMs can provide a fast 
framework for the data analysis process, and the 
default parameters can also perform well in a 
specific dataset but their generalization ability is 
insufficient.  

In summary, LLM, as an important development 
direction of generative artificial intelligence, will be 
an effective auxiliary tool for industrial upgrading in 
the future. But now, LLM still has unavoidable risks 
in reliability and robustness, we should make use of 
it reasonably and carefully, rather than depend on it 
absolutely. It should be noted that this paper still has 

certain limitations in terms of dataset size and 
specific fields. In the future, we will further analyze 
the role of explicit knowledge in LLM and expand 
the data volume and application fields. 
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certain limitations in terms of dataset size and 
specific fields. In the future, we will further analyze 
the role of explicit knowledge in LLM and expand 
the data volume and application fields. 
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