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DEVELOPMENT OF A DEEP LEARNING MODEL  
FOR FORECASTING AND OPTIMIZING RIDE-SHARING ROUTES

Abstract. The study investigates the potential use of machine learning (ML) technologies, including 
Recurrent Neural Networks (RNNs), in ride-sharing and urban mobility optimization. Advanced deep 
learning (DL) models can solve growing challenges in urban areas, such as road safety, environmental 
pollution, and traffic congestion. Three different RNN architectures (SimpleRNN, LSTM, GRU) are com-
pared to predict trips with their pickup and drop-off points. According to the assessment metrics, GRU 
shows better results in terms of Mean Haversine Distance (6.450 km) than SimpleRNN (7.156 km) and 
LSTM (6.569 km). Moreover, the GRU model surpasses other models in other indicators, such as MSE 
(0.0010) and MAE (0.0211). In addition, OSRM API is used to build routes between predicted pickup 
and drop-off points, as well as to optimize ride-sharing routes using real-time geographic data. The study 
highlights that ML approaches, in particular DL, can be used to solve problems related to urban mobility 
by improving transport efficiency and reducing traffic. The study results provide recommendations for 
developing urban transport systems using data-driven approaches to enhance ride-sharing opportunities.

Key words: Trip Forecasting, Ride-Sharing, Machine Learning, Deep Learning, SimpleRNN, Long 
Short-Term Memory, Gated Recurrent Unit.

1. Introduction

Turning rural populations into urban ones is 
known as urbanization, typically seen as a gauge of 
social and economic progress. It is a crucial sign of 
modern society and a crucial historical phase in the 
industrialization of any nation [1]. Urbanization has 
been a defining global trend for many years, and in 
the twenty-first century, it is still growing quickly. 
Approximately 56% of people on the planet now re-
side in cities, and nearly 67% of the world’s popula-
tion is expected to live in cities by 2050 [2]. Urban-
ization has also occurred in Kazakhstan. As of 2023, 
58.18% of Kazakhstan’s population resides in urban 
regions 2023 [3]. The proportion of Kazakhstan’s 
population living in cities has gradually increased 
during the last ten years. About 53.2% of people 
lived in cities in 2009; by 2019, that number had in-
creased to 57.6%. In absolute terms, the number of 
people living in cities increased from approximately 
8.5 million in 2009 to 10.5 million in 2019 [4].

Congestion, traffic safety, air pollution, and 
greenhouse gas emissions are only a few of the 
transportation-related issues that have worsened due 
to urbanization [5]. The Texas Institute of Trans-

portation claims that individual congestion indica-
tors can be measured using the following indicators. 
The values for 2022 are also shown below: Yearly 
delay per auto commuter, the additional time that 
private vehicle drivers and passengers who nor-
mally travel during peak hours spend travelling at 
crowded speeds throughout the year as opposed to 
free-flowing speeds, and this value is equal to 54 
hours; The next indicator is the travel time index, 
the ratio of travel time during peak hours to travel 
time in free traffic, and the result for 2022 is 1.21 
[6]. It means that a 20-minute free-flow commute 
takes 26 minutes during peak hours. According to 
the World Health Organization, 1.19 million people 
die in car accidents each year, and road safety is the 
second most important issue [7]. The next challenge 
is the impact of urbanization on air quality: in 2017, 
air pollution from transportation caused 3.5 million 
premature deaths from cancer, diabetes, heart dis-
ease, lung infections, obstructions, and respiratory 
infections. Furthermore, global transport emissions 
resulted in approximately 8 million years of lost life 
and USD 1 trillion in health effects in 2015 [8].

According to Guyader et al. (2021), shared mo-
bility through initiatives like car, bike, and ride-shar-
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ing can be seen as a strategy to lessen traffic on the 
roads, transportation infrastructure, carbon dioxide 
emissions, and the environmental impact of travel. 
[9]. In addition, some cities have implemented data-
driven approaches to improve urban transportation. 
For example, applications of data-driven technolo-
gy include automatic traffic signal control based on 
data gathered on traffic congestion using sensors in-
tegrated into traffic lights and transportation service 
management based on data received by the situation 
center in London. Global Positioning System (GPS) 
sensors are used to track the movements of public 
transport in Barcelona. Additionally, smart traffic 
light systems are used to automatically give prior-
ity to public transport and other modes of transport, 
including emergency services [10]. 

The study’s goal is to optimize urban mobility 
and ride-sharing using ML methods, as it can be use-
ful to increase the sustainability, reliability, and effi-
ciency of urban transportation. To evaluate large da-
tasets and find patterns, the usage of ML approaches 
is advantageous. The research and development pro-
cess includes data collection, trip and weather data, 
data preprocessing, cleaning, and transforming into 
a suitable format for analysis, building, training, and 
evaluating models, trip prediction, building route, 
and optimizing ride-sharing route. Traditional trans-
port management is often the cause of urbanization 
challenges in the transport sector of megacities, as it 
does not meet the dynamic requirements of large ur-
ban areas. ML methods for optimizing ride-sharing 
routes will reduce traffic, avoid traffic problems in 
the future, and develop more efficient urban mobil-
ity that meets the needs of urban residents.

2. Literature Review

Today a few urban planning strategies exist. For 
instance, the Park-and-Ride (PnR) system, imple-
mented in Tsukuba, Japan, shows promise in low-
ering vehicle emissions and urban traffic conges-
tion. According to the results, well-designed PnR 
systems with the ideal bus capacity and frequency 
minimize emissions, ease traffic, and enhance travel 
efficiency. In order to assess how PnR systems af-
fect waiting times, travel times, and vehicle emis-
sions, the study creates a mathematical framework 
that combines queueing theory and emissions mod-
elling. During the study, a customized model is pro-
vided for calculating the total societal cost while 
considering the mean time of all trips and the mean 
emissions of all vehicles. The resulting cost in inter-
national dollars per capita is the total Social Cost of 

Emissions and Total Trip Time (SCETT). The PnR 
system is enhanced with SCETT to function as a 
tool for the finding of transport policies. The model 
incorporates SCETT for optimal parameters of in-
terest that describe PnR hubs, such as bus frequency 
interval, bus capacity, and percentage vehicle us-
age. Compared to the current situation, deploying 
the suggested socially optimal PnR transportation 
strategy in Tsukuba city results in a 30% reduction 
in social expenses. A queueing model that combines 
two separate queues – one that records client move-
ment and the other that records vehicle movement 
on the road – is presented to assess the waiting and 
travel times of consumers under various PnR situ-
ations. To ensure the robustness of the results, the 
theoretical approximation analysis using the matrix 
geometric approach and the Monte Carlo simulation 
are presented for this model. A comparison of the 
analytical and simulation results confirmed the ap-
proach’s validity. Moreover, total car emissions and 
journey times are simulated using empirical data 
from the 2018 Person journey study, producing re-
sults that closely match observed data. For example, 
for journeys under 60 minutes, the simulation es-
timated an expected total travel time of 0.4249 h, 
which was quite similar to the corrected empirical 
figure of 0.3893 h [11].

The combination of shared mobility services 
(SMSs) and public transport is the next example. In 
order to reduce traffic and increase travel efficiency, 
the study focuses on how e-hailing, ridesharing, 
and carpooling services could improve the current 
public transit networks. SMSs have the potential to 
significantly increase mobility, particularly in areas 
with low demand and low population where public 
transport cannot offer first and last mile service. The 
paper investigates that the proposed model can be 
used in both continuous and integer settings, and 
it computes the user equilibrium, which states that 
every commuter attempts to reduce their own ex-
penses, and when no one is prepared to alter their 
decisions in order to do so, equilibrium is reached, 
using the Beckmann formulation and the system op-
timum, which is balance of the system and presumes 
that the overall cost of the system is kept to a mini-
mum, when it handles mode and path choices and 
passenger-driver matching simultaneously, leading 
to a Mixed-Integer Bilinear Programming (MIBLP) 
formulation. Moreover, the suggested model sheds 
light on variables influencing how the modes are 
used in a synthetic multi-modal network. Examin-
ing the cost of anarchy in these multimodal systems 
also contrasts user equilibrium with system opti-
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mal solutions. The Sioux Falls urban transportation 
is also studied to assess commuters’ behavior and 
scale up the suggested model’s applicability to real-
istic settings [12].

The last strategy is traffic signal scheduling us-
ing the model predictive control (MPC) approach, 
with the goal of equitably reducing delays for both 
cars and pedestrians. A framework for adaptive traf-
fic signal control is introduced, considering a his-
torical database, a machine learning-enabled arti-
ficial intelligence prediction model, a macroscopic 
mixed-flow optimization model, and the VISSIM 
simulation platform. The experiment results showed 
that the suggested approach in a network structured 
like Manhattan may effectively balance the require-
ments of both walkers and car drivers. This tech-
nique is more flexible and adaptable to meet pas-
senger demand because it combines bus dispatching 
and on-road operation, particularly boarding con-
trol, to minimize passenger delay time and operat-
ing bus vacancy [13].

According to Sayed et al., using machine learn-
ing to urban mobility increases the precision of the 
city’s transit distribution by forecasting traffic flow 
[14]. Moreover, the ride-sharing demand forecast is 
useful since 50% of carriers can finish 96% of trips 
[15–18]. Furthermore, driver-passenger matching 
decreases waiting times by 10–20 minutes, or from 
30% to 43%, for both drivers and passengers [19–
21]. The impacts of waiting and travel time optimi-
zation have also been the subject of several studies 
[20, 21]. Route optimization helps to reach more 
people for excursions by expanding the distribution 
of transport in the city for flexible pickup and drop-
off locations [15, 19, 22]. Other research looks at 
ways to optimize current ride-sharing systems, such 
as integrating many of them [23].

According to research, Reinforcement Learning 
(RL) is the most widely used algorithm for optimiz-
ing urban mobility, particularly when combined 
with other techniques like Graph Neural Networks 
(GNN), Markov Decision Processes (MDP), Model 
Predictive Control (MPC), and Shared Autonomous 
Vehicles (SAV) to cut down on waiting times [16, 
18, 21]. Additionally, Deep Q-Network (DQN) is a 
popular urban planning strategy for optimizing the 
dispersion of fewer transportation alternatives for 
many people [17].

There are limitations and disadvantages to the 
existing corpus of study. Large amounts of data are 
required for accurate forecasting and transportation 
system optimization, including traffic, passenger 

demand, and vehicle characteristics. Deep learning 
(DL) and reinforcement learning (RL) are two ML 
approaches that need a lot of processing capacity. 
Because of this, they can be costly for large trans-
portation networks and are challenging to employ 
in real time. Furthermore, integrating new methods 
and models into the existing traffic management 
systems may prove difficult. This is a result of the 
need to upgrade infrastructure, update work proce-
dures, and train personnel. Finally, certain models 
and methodologies developed for one urban area 
may not be applicable in another due to differences 
in infrastructure, population, and traffic patterns. To 
accomplish this, models need to be adjusted to each 
city’s particular situation.

The current research overlooks the significance 
of meteorological variables in traffic predictions. 
Much more accurate traffic forecasts would be pro-
duced if traffic prediction algorithms included com-
prehensive meteorological data, such as tempera-
ture, wind speed, and precipitation. The forecasting 
models’ applicability to various urban environments 
is also a significant problem in transport manage-
ment. By modifying the input parameters to account 
for local traffic data, infrastructure, population, and 
other pertinent aspects, traffic forecasting models 
may be customized for use in a variety of places. 
Future studies will examine the effects of various 
weather patterns on traffic patterns and the effec-
tiveness of various machine learning algorithms in 
using this data to generate forecasts that are more 
accurate. Additionally, it will offer and evaluate a 
methodology for modifying current traffic models to 
fit new urban settings while maintaining high levels 
of accuracy for ridesharing route construction and 
traffic forecasting in the face of shifting city-specific 
features.

3. Materials and Methods

3.1. Dataset
The study employed the New York City Taxi-

Trip Distance Matrix dataset to optimize ride-shar-
ing and anticipate routes. The Kaggle platform is 
the source of the dataset. Latitude, longitude, and 
pickup and drop-off timings are among the taxi trip 
parameters included in the dataset.

There are 39,396 rows in the dataset. Figure 1, 
which shows the number of taxi journeys for each 
hour of the day, indicates that the average number of 
taxi trips per day is around 1,700. The most journeys 
are made between 10 and 11 p.m., while the fewest 
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are made between 5 and 6 a.m. Figure 2 shows the 
number of travels for each day of the week, with 
Friday accounting for the bulk of journeys. Addi-
tionally, Figure 3 displays the travel density for ev-
ery hour and day of the week. It is observed that the 
hours between midnight and five in the morning are 
not the most popular periods for taxi rides, except 
for Fridays. 

The next dataset is New York City Taxi Trip – 
Hourly Weather Data, from Kaggle platform. The 
dataset includes datetime, temperature in Celcius 
and Fahrenheit, dew point in Celcius and Fahren-
heit, humidity, wind speed, wind direction in de-
grees, visibility in kilometers, pressure, boolean 
value rain, boolean value snow, and boolean value 
thunder.

Figure 1 – Histogram of Taxi Trips by Hour of the day.

Figure 2 – Number of Taxi Trips by Day of the Week.
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Figure 3 – Taxi Trips Heatmap: Day of the Week vs Hour of the Day.

New York City Taxi Trip – Hourly Weather 
Data dataset has the weather data for the full 2016 
year (Figure 4). However, Figure 5 shows that the 
New York City Taxi Trip-Distance Matrix dataset 
contains data from January 1, 2016, to January 8, 
2016, which is why weather data for this period is 
extracted. 

The filtered dataset has 232 rows for the time 
frame from January 1 to January 8. Figure 6 dis-
plays the average temperature for each hour of the 
day. The average hourly temperature climbs sub-
stantially in the afternoon after falling in the morn-

ing, peaking between 15:00 and 16:00. The tem-
perature peaks in the evening and night and then 
progressively drops until midnight, when it is at its 
lowest. The average daily temperature is shown in 
Figure 7. On January 1, the temperature is at its 
lowest. Over the next two days, it rises significant-
ly, and on January 3, it slightly decreases. There is 
a discernible peak on January 4 and a steep drop 
on January 5. The most significant increase occurs 
on January 6 and reaches the greatest temperature 
in the record, followed by a small stability over the 
next three days.

Figure 4 – First and last weather datetime.

Figure 5 – First and last taxi pickup and drop-off datetime.
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Figure 6 – Average Temperature by Hour of the Day.

Figure 7 – Daily Average Temperature.

3.2. Model Development
A DL model pipeline with three main stages 

– Data Preprocessing, Model Development, and 
Simulation and Prediction – is shown in Figure 
8. Five processes make up the Model Develop-
ment process: feature extraction, data scaling, 

DL model construction, model training, and 
model evaluation using various metrics. Among 
these measurements are Mean Haversine Dis-
tance, Mean Squared Error (MSE), Mean Abso-
lute Error (MAE), and Coefficient of Determina-
tion (R²).
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Figure 8 – Deep Learning Model Pipeline.

Figure 9 – Feature importance in LSTM Model.

3.3. Data Preprocessing
The data preprocessing pipeline prepares the 

taxi trip dataset for the modelling. Firstly, before 
extracting pertinent time-based data, including 
the hour, minute, and day of the week, the pickup 
timestamp is transformed into a datetime format to 
record trip trends over time. The latitude and longi-
tude coordinates are the target variables. Some da-
tetime parameters, including the year and month, 
are not the features since the data only covers one 
year (2016) and one month (January). Figure 9 il-
lustrates the significance of the input parameters in 

relation to the Long Short-Term Memory (LSTM) 
model. It is demonstrated that the LSTM model 
is most affected by the hour of the day, visibility 
based on the weather, pressure, and the presence 
of rain, but the day of the week, temperature, dew 
point, humidity, and wind speed have a somewhat 
smaller effect. The following parameters have lit-
tle impact: fog, wind direction, and minute. The 
model is unaffected by the year or month. Further-
more, certain weather conditions – like the pres-
ence of snow, hail, thunder, and tornadoes – are 
superfluous.
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3.4. SimpleRNN
The first architecture is a SimpleRNN. A Sim-

pleRNN with 256 units and a hyperbolic tangent ac-
tivation function makes up the first layer (Figure 10). 
A tangent function can model non-linear interactions, 

and a larger number of neurons enables the network 
to learn more complicated characteristics. Deeper 
representations are also possible because the initial 
RNN layer provides a parameter that guarantees the 
full sequence is transmitted across the network. 

Figure 10 – SimpleRNN Architecture.

Dropout regularization is used after the first 
RNN layers with a dropout rate of 0.1 to counter-
act the possible overfitting from deep architectures. 
This drives the network to create redundant repre-
sentations that better generalize to unseen data by 
randomly setting 10% of the units to zero at each 
update cycle during training. 

Additionally, the model layers a second 128-
unit SimpleRNN layer (which also has tangent acti-
vation and a parameter to return the final output), a 
10% Dropout layer, and a third 64-unit SimpleRNN 
that does not return sequences. 

After the recurrent layers, the network switches 
to the Dense layer, which is a 32-unit layer that uses 
the rectified linear unit (ReLU) activation to provide 
non-linear adjustments that make it easier to capture 
complex relationships between the compressed at-
tributes and the target variables.

The four objective outputs (pickup latitude, 
pickup longitude, drop-off latitude, and drop-off 
longitude) are represented by the four units of the 
final Dense layer.

The Adam optimizer, which has a learning rate 
of 0.001, is used to optimize and train the model. 
The loss function employed is the MSE, which 
is standard for regression tasks, and the MAE is 
tracked as an additional performance metric to pro-
vide more interpretable error magnitudes.

Early stopping is implemented as a safeguard 
against overfitting by monitoring the validation 
loss. With a patience parameter set to 10 epochs, 
the training process halts if the validation loss does 
not improve over 10 consecutive epochs, and it 
restores the best model weights observed during 
training.

The model is trained on a dataset of scaled input 
features and corresponding target variables with 50 
epochs and a batch size of 32, while validation is 
performed on the test dataset.

3.5. LSTM
The next implemented DL model is LSTM. The 

architecture commences with an LSTM layer con-
taining 64 hidden units and utilizing ReLU activa-
tion function (Figure 11). Moreover, the parameter, 
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that returns sequence, is pivotal, as it ensures that 
the complete sequence of outputs is relayed to the 

subsequent LSTM layer, thereby preserving the 
temporal structure of the input data.

Figure 11 – LSTM Architecture.

In order to transfer the high-level characteristics 
to the final regression outputs, the temporal features 
that were recovered by the LSTM layers are then 
processed via a number of Dense layers. The first 
Dense layer, which has 32 units and a ReLU activa-
tion, introduces non-linearity to enhance the feature 
representation further. The following step is a sec-
ond 16-unit dense layer that continues the feature 
condensation process while retaining the critical in-
formation required for accurate prediction. The last 

Dense layer, which comprises four units, directly 
outputs the predicted values for the four target vari-
ables.

The model is optimized using the Adam opti-
mizer, which has a learning rate 0.001. The model 
is trained according to the MSE loss function, and 
its performance is assessed using the MAE mea-
sure. The likelihood of overfitting is decreased by 
employing an early stopping technique. After 10 
consecutive epochs, it monitors the validation loss 
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and terminates training if no improvement is ob-
served. Training is conducted with a batch size of 
32 over 50 epochs to allow for stable learning dy-
namics.

3.6. GRU
The Gated Recurrent Unit (GRU) architecture 

implements the final model. Using the tangent acti-

vation function, the first layer, the GRU layer with 
128 units (Figure 12), effectively learns temporal 
connections while addressing the vanishing gradi-
ent issue. By configuring the parameter in the first 
layer, more temporal patterns can be captured by 
propagating the entire series of concealed states to 
the subsequent layer.

Figure 12 – GRU Architecture.
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After the first level, the second GRU level is 
implemented, consisting of 64 blocks, and then 32 
blocks. To gradually decrease the time information 
and reduce the complexity of the model, the num-
ber of blocks has been purposefully minimized. 
The tangent function is also utilized in these layers. 
However, there is no parameter to return sequences 
in the last layer with 32 neurons.

The model uses a sequence of Dense layers to 
transform the temporal representations into the final 
output space, departing from the recurrent design. 
The purpose of the first Dense layer’s 64 units, which 
have a ReLU activation function, is to integrate non-
linear transformations that help close the gap be-
tween sequential feature extraction and the regression 
task. The feature space is further refined by a second 
Dense layer of 32 units, which enables the model to 
recognize intricate patterns relevant to the prediction 
task. The last Dense layer, which has four units, has a 
strong correlation with the goal outputs.

The model is trained with the MSE loss function 
and optimized with the Adam optimizer (learning 
rate = 0.001), with MAE as an evaluation metric. 
Early stopping is used to enhance generalization 
and avoid overfitting, monitoring validation loss 
and restoring the best model if no improvement is 
seen over 10 epochs. A batch size of 32 is used for 
training over 50 epochs, ensuring a balance between 
computing efficiency and learning stability.

3.7. Trip Prediction
The first step of the prediction pipeline involves 

entering meteorological and time information and 
then extracting important time variables, including 
the hour, minute, and day of the week, from the des-
ignated pickup time. Following this, the features are 
normalized using the same scaler employed during 
the training phase to guarantee consistency in the 
data transformation procedure.

Additionally, a time range can be added to the 
pipeline, allowing one to predict which trips will 
take place before and after the chosen time win-
dow. The model then predicts the locations for 
pickup and drop-off based on the scaled inputs. 
Using the output scaler that was set up during 
training, the inverse transformation is then ap-
plied to return the predicted values to their initial 
scale.

3.8. Ride-Sharing Route Building
The OSRM API is used to determine the best 

driving routes between designated pickup and 
drop-off locations. Using OpenStreetMap data, the 
OSRM service offers road network routing options 
that are both quick and versatile. The Folium pro-
gram is then used to depict each route on an actual 
road map. Figure 13 shows a flowchart for a trip 
forecasting and routing system that includes trip 
forecasting, route design with OSRM API connec-
tivity, and map visualization.

Figure 13 – Trip Forecasting and Routing System Stages.

4. Results and Discussions

Table 1 shows the metrics of the three DL mod-
els: SimpleRNN, LSTM, and GRU.

The GRU model is chosen as the main predic-
tive model for ride-sharing route optimization and 
pickup and drop-off location estimation. Com-
pared to other models, its performance on various 

evaluation metrics supports this choice. A lower 
prediction error and more accuracy in estimating 
location coordinates are indicated by the GRU 
model’s lowest MAE and MSE. It also achieves 
the second-highest R² value, indicating better ex-
planatory power across trip location variability. 
Most significantly, the GRU model’s Mean Haver-
sine Distance is the lowest of all the models evalu-
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ated, demonstrating its improved spatial accuracy 
in trip trajectory prediction. These results affirm 
that the GRU model offers a balanced trade-off be-

tween predictive accuracy and generalization ca-
pability, making it the most suitable choice for this 
application.

Table 1 – Deep Learning Metrics.

# Model MSE MAE R² Mean Haversine 
Distance

1 SimpleRNN 0.0011 0.02303 0.0239 7.156
2 LSTM 0.0010 0.0215 0.1098 6.569
3 GRU 0.0010 0.0211 0.1018 6.450

10:00 a.m. on a Wednesday, considering a 
5-minute time window (9:55 – 10:05 a.m.), was 
used to predict pickup and drop-off locations for 
New York City. Furthermore, the following weather 
conditions have been added as input parameters: 
temperature (12 degrees Celsius), dew point (-4 de-
grees Celsius), humidity 50%, wind speed (7 km/h), 

wind direction (0 degrees), visibility (15 km), pres-
sure (1017.9 mBar), rain, and no fog. The antici-
pated pickup and drop-off sites are shown in Figure 
14 as follows: red lines connecting the pickup and 
drop-off spots are the best roadways, as determined 
by the OSRM API; blue dots represent pickup loca-
tions, and green points represent drop-off locations.

Figure 14 – GRU Model Predicted Trips.

To share rides, one can utilize a ride-detecting 
algorithm. To find a trip where the pickup location 
is closer than the drop-off location, at a guaranteed 
maximum distance (1 km), and in the same direc-
tion, the algorithm first randomly selects the pickup 

location on the trip. It then calculates the distance 
between the pickup location and the drop-off lo-
cation, as well as between the pickup location and 
another drop-off location. The drop-off site will be 
chosen once each of these requirements has been 
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satisfied. The last drop-off location is linked to the 
route, and it is contingent upon which drop-off loca-
tion is closest to the second pickup location. 

Figure 15 shows the selected trips, combined 
pickup and drop-off sites, and corresponding routes. 

The system chose trips 32603 and 32604 to be 
shared. These goods satisfy the previously men-
tioned requirements: Less than 1 mile separates the 
boarding and disembarkation points, and both trips 
are taken in the same direction.

       
 (a)                                                                               (b)

        
(c)                                                                                    (d)

Figure 15 – Selected Trips for Ride-sharing: (a) Pickup Point 32603;  
(b) Dropoff Point 32603; (c) Pickup Point 32604; (d) Dropoff Point 32604.

The ability to share travels by specifying trips is 
seen in Figure 16. At 10:00 a.m., the joint journey starts 
at the first pickup site (Figure 16(a)) and travels to the 

second pickup location at 10:00 a.m. (Figure 16(b)), 
continues to the first drop-off point (Figure 16(c)) and 
ends at the second drop-off point (Figure 16(d)).
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 (a)                                                                               (b)

       
(c)                                                                                    (d)

Figure 16 – Ride-sharing route: (a) First Pickup Point; (b) Second Pickup Point;  
(c) First Drop-off Point; (d) Second Drop-off Point.

5. Conclusions

This study tackles the problems with urban 
mobility exacerbated by increasing urbanisation by 
offering a DL-based approach for anticipating and 
optimizing ride-sharing routes. The study demon-
strates the effectiveness of recurrent neural net-
works, particularly the GRU model, by combining 
temporal and meteorological data to improve the 
accuracy of trip location forecasts. The model’s 
performance across several evaluation parameters, 
including Mean Haversine Distance, R², MAE, and 
MSE, guarantees high spatial accuracy in trip tra-

jectory calculations, supporting the model selec-
tion.

Additionally, a ride-sharing system that opti-
mizes the most effective pickup and drop-off se-
quences was created by integrating the GRU model 
with geolocation data. This method improved prac-
tical applicability by ensuring that the chosen routes 
matched existing road networks through route op-
timization utilizing the OSRM API. In addition to 
reducing unnecessary journey kilometers, the me-
thodical approach will increase overall transporta-
tion efficiency, reduce urban traffic, and improve 
passenger convenience.
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ML-based ride-sharing optimization solu-
tions, such as trip prediction and route plan-
ning, increase transportation efficiency by 
reducing traffic and travel delays. The results 
show that data-driven strategies can success-
fully support urban planning efforts targeted 
at minimizing environmental impact and en-
hancing commuter experiences by aiding in 
the creation of intelligent and sustainable 
transportation networks.
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