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DEVELOPMENT OF HYBRID QUANTUM-CLASSICAL  
MODELS FOR COMPUTER VISION

Abstract. This research explores the integration of quantum computing with classical machine learn-
ing to enhance data classification tasks using Quantum Neural Networks (QNN) and Parameterized 
Quantum Circuits (PQC). The hybrid approach leverages the advantages of both quantum and classical 
systems to improve the efficiency and accuracy of data processing. In this model, data is encoded into 
qubits using amplitude encoding, representing input vectors as amplitudes of quantum states. The QNN 
is initialized by placing the qubits in superposition using Hadamard gates, followed by data encoding 
with parameterized rotational gates that map classical data to quantum states using rotation angles. 
PQC plays a central role by applying layers of parameterized quantum operations to process data in 
the quantum space. These parameters are optimized during the training process, where a quadratic 
loss function minimizes the error between the predicted quantum states and the true class labels using 
gradient descent. Experiments conducted on the MNIST dataset show that the hybrid quantum-classical 
neural network (QCNN) with PQC achieves a classification accuracy of over 95%, highlighting its poten-
tial in machine learning applications. The results demonstrate that integrating quantum computing with 
classical machine learning enhances performance in complex data analysis tasks due to the exponential 
growth of quantum state space and the parallelism of quantum systems, making hybrid models promising 
for computer vision and classification tasks.

Key words: quantum neural networks, hybrid computing, data classification, machine learning, gra-
dient descent.

1. Introduction

The rapid progress in the field of machine 
learning (ML) has significantly transformed vari-
ous industries, including healthcare, finance, and 
consumer behavior analysis. Esteva et al. demon-
strated that deep neural networks (DNNs) can clas-
sify skin cancer with accuracy comparable to that 
of experienced dermatologists, highlighting the 
potential of ML in medical diagnostics [1]. Fur-
thermore, Ngai et al. analyzed the application of 
data mining techniques to detect financial fraud, 
creating a classification system that emphasizes the 
importance of data mining for identifying and pre-
venting fraudulent activities [2]. Zhang et al. fur-
ther contributed to this field by applying machine 
learning algorithms to predict consumer preferenc-
es and uncover gender biases in online reviews [3]. 
As the size and complexity of datasets increase, the 
limitations of traditional computational methods 
become increasingly apparent. Amodei et al. dis-
cuss the challenges associated with the exponen-

tial growth of data volume and the need for more 
efficient computational power [4]. This situation 
has led to a resurgence of interest in quantum com-
puting, which promises to overcome these limita-
tions by leveraging quantum mechanics to perform 
computations at unprecedented speeds. Waldrop 
describes the forthcoming challenges to Moore’s 
Law, emphasizing the relevance of innovative 
computational paradigms [5].

Quantum algorithms, such as those proposed 
by Shor for factoring and discrete logarithms [6] 
and Grover for database searching [7], demon-
strate significant advantages of quantum comput-
ing over classical methods. Biamonte et al. have 
since become pioneers in the integration of quan-
tum computing with machine learning, coining the 
term “quantum machine learning” (QML), aimed at 
harnessing quantum mechanics to enhance learning 
capabilities [8]. This integration has sparked con-
siderable research into quantum neural networks 
(QNNs), which utilize quantum circuits to model 
neural networks [9].
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Various approaches to QML have emerged, 
including quantum support vector methods [11], 
which enhance the classification of large datasets, 
and quantum perceptron models [13]. Moreover, 
quantum data fitting algorithms and supervised 
learning demonstrate the potential of quantum sys-
tems to revolutionize traditional ML tasks [10][12]. 
The development of parameterized quantum circuits 
as models for machine learning further illustrates 
this trend [16].

Despite these achievements, the search for effec-
tive QNN architectures continues. Farhi and Neven 
explore the classification capabilities of quantum 
neural networks on near-term processors [20]. 
Meanwhile, Dunjko and colleagues highlighted the 
progress made in quantum reinforcement learning, 
suggesting that QML can expand its capabilities 
to tackle more complex decision-making problems 
[21]. Additionally, advancements in circuit-centric 
quantum classifiers illustrate the evolving landscape 
of QML, where quantum circuits are optimized to 
address specific machine learning tasks [18]. How-
ever, despite these advancements, many existing 
QML methodologies face limitations, particularly 
regarding scalability, sensitivity to noise, and the 
lack of reliable architectures suitable for various 
real-world applications.

In this research, we propose to develop a hybrid 
quantum-classical architecture specifically designed 
for computer vision applications. Our approach 
combines QNN with Parameterized Quantum Cir-
cuits (PQC) to enhance the efficiency of classifying 

image datasets such as MNIST. The hybrid model 
leverages the advantages of both quantum and clas-
sical systems, where quantum circuits are used for 
efficient data encoding and feature extraction, while 
classical networks handle the remaining computa-
tions. This integration allows us to utilize the ex-
ponential state space and parallelism of quantum 
systems, which could potentially lead to significant 
improvements in accuracy and computational effi-
ciency.

2. Materials and Methods 

In this section, we present our proposed com-
bined classical and quantum computational meth-
ods. Specifically, we partially transform a classical 
neural network into a quantum neural network to 
create a hybrid quantum-classical neural network. 
The proposed methodology consists of three main 
components: data collection, model development 
and evaluation.

2.1. Data Collection and Encoding
The primary dataset used in this research is the 

MNIST dataset, a well-known benchmark in the 
field of machine learning, particularly for hand-
written digit recognition tasks. The MNIST dataset 
consists of 70,000 grayscale images of handwritten 
digits, each measuring 28x28 pixels. This dataset is 
particularly valuable due to its simplicity and the 
extensive research that has been conducted using it, 
making it a standard for evaluating various machine 
learning algorithms.

Figure 1 – MNIST Dataset

The MNIST dataset is publicly available and 
can be easily accessed through various libraries, in-
cluding TensorFlow and PyTorch. These libraries 
provide straightforward interfaces for loading the 
dataset directly into the working environment, fa-
cilitating quick integration into the model develop-
ment process. The dataset is divided into two parts: 
60,000 training images and 10,000 testing images. 
This division ensures that the model can be trained 

on different samples and then evaluated based on 
unseen data to assess its generalization capabilities.

2.1.1 Data Preprocessing
Before using the MNIST dataset to train the hy-

brid model, several preprocessing steps need to be 
performed for effective data preparation:

Normalization: Pixel values of the images, 
which range from 0 to 255, will be normalized to 
values between 0 and 1. This normalization process 
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helps to improve convergence speed during model 
training and ensures that the model processes all in-
put features equally.

Reshaping: The images will be reshaped ac-
cording to the requirements of the neural network. 
For the CNN (Convolutional Neural Network) com-
ponent, the images will be transformed into a 4D 
tensor with dimensions (batch_size, height, width, 
channels). In the case of grayscale images from 
MNIST, the channel dimension will be 1.

Data Augmentation: To increase the diversity of 
the training data and enhance the model’s robust-
ness, various data augmentation techniques will be 
applied. These methods may include random rota-
tions, translations, scaling, and horizontal flips, al-
lowing the model to learn to recognize digits from 
different perspectives.

2.1.2 Quantum Data Encoding 
For the quantum component of the hybrid 

model, it is crucial to encode the preprocessed data 
into a quantum format that can be utilized by quan-
tum circuits. Several methods exist for this pur-
pose, and the choice of encoding can significantly 
impact the model’s performance. In this study, we 
will consider amplitude encoding for quantum data 
encoding.

Amplitude encoding is a powerful method for 
representing classical data in a quantum state, al-
lowing for efficient processing of high-dimensional 
data. In the context of the MNIST dataset, which 
consists of 28x28 grayscale images of handwritten 

digits, amplitude encoding enables us to encode 
each image as a quantum state using a logarithmic 
number of qubits relative to the number of pixels.

Given a normalized N-dimensional input vec-
tor  representing an image from the MNIST da-
taset, where N = 784 (the total number of pixels in 
a 28x28 image), we can encode the vector into the 
quantum state  as follows:

(1)

Here,  is the amplitude corresponding to the 
-th pixel of the image, and  represents the -th 

computational basis state. Each element  is de-
rived from the pixel values of the image after nor-
malization, ensuring that the total amplitude satis-
fies the normalization constraint .

The main advantage of amplitude encoding lies 
in its ability to leverage the exponentially grow-
ing Hilbert space of quantum states, allowing us to 
represent high-dimensional data using a relatively 
small number of qubits. This feature is particularly 
useful when dealing with complex datasets, such as 
MNIST, which can exhibit significant variations in 
handwritten digits.

The preprocessing stage, which may include 
normalization, resizing, and noise suppression, lays 
the groundwork for subsequent stages by enhancing 
the quality of the input data.

Figure 2 – Diagram of the hybrid model for image preprocessing

After preprocessing, classical information is 
transformed into quantum using methods such as 
amplitude encoding, where pixel values are repre-
sented as amplitudes of a quantum state. For ex-
ample, the normalized input vector obtained from 
pixel data can be converted into a quantum state 

, allowing the quantum system to process 
the data efficiently. The next step involves de-
veloping a PQC, which consists of parameterized 

quantum gates arranged in a manner that best suits 
the specific task. The analysis can be repeated 
multiple times, with the number of repetitions ad-
justed based on empirical results. After applying 
the analysis, the quantum state is measured, result-
ing in classical outcomes that are evaluated using 
a predefined loss function to assess the model’s 
effectiveness. The cycle of measurements, feed-
back, and parameter adjustments continues until 
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the model converges and satisfactory performance 
in recognizing digits from the dataset is achieved. 
Overall, this integration of classical preprocessing 
with quantum computing methods allows research-
ers to leverage the unique capabilities of quantum 
neural networks to enhance the performance of 
machine learning algorithms in solving complex 
tasks such as digit recognition.

2.2. Quantum Circuit (Parameterized Circuit)
The QuantumMNISTRecognizer algorithm de-

scribes the steps for implementing a quantum circuit 
module designed for digit recognition in the MNIST 
dataset. The algorithm consists of three main pro-
cedures: INITIALIZE, TRAIN, and TEST, each 
serving a specific purpose in the quantum machine 
learning pipeline.

Algorithm 1: Quantum circuit module
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:

procedure INITIALIZE(kernel_size, backend, shots)
 self.n_qubits ← kernel_size ** 2
 self._circuit ← Create a quantum circuit with n_qubits
 self.theta ← Create a list of Parameter objects for each qubit
 for i from 0 to n_qubits – 1 do
 self._circuit.rx(self.theta[i], i) // Apply RX gates to all qubits
 end for
 self._circuit.barrier() // Add a barrier
 self._circuit += random_circuit(self.n_qubits, 2)
 self._circuit.measure_all() // Measure all qubits
 Set the number of shots for execution
end procedure
procedure TRAIN(X_train, y_train, epochs)
 for each epoch in epochs do
 for each (x, y) in (X_train, y_train) do
 θ ← Learnable parameters for the current image x

self._circuit.assign_parameters(θ) // Assign current parameters to the circuit
TC ← Transpile the circuit for the specified backend
Results ← Execute the circuit TC on the backend
loss ← Compute the loss function using Results and y
Update θ using an optimizer (e.g., gradient descent)

 end for
 end for
end procedure
procedure TEST(X_test)
 Predictions ← []
 for each x in X_test do
 θ ← Optimal parameters for x
 self._circuit.assign_parameters(θ) // Assign optimal parameters for testing
 TC ← Transpile the circuit for backend
 Results ← Execute the circuit TC on the backend
 p ← Measurement probabilities for each possible state
 pred ← Classification based on p
 Predictions.append(pred)
 end for
 return Predictions
end procedure

The INITIALIZE procedure begins by deter-
mining the number of qubits required for the quan-
tum circuit, which is calculated as the square of the 
kernel_size parameter. This approach ensures that 
each pixel of the input image can be represented by 
a qubit, allowing the circuit to efficiently process 
image data. A quantum circuit is then created with 

the computed number of qubits, and a list of param-
eterized angles, called theta, is created for each qu-
bit. These angles are specifically designed for use 
with RX gates that will be applied to the qubits. This 
initialization process lays a solid foundation for the 
quantum circuit, preparing it for effective training 
and testing in the digit recognition task.
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The TRAIN procedure begins with iterating 
over the training data for a specified number of ep-
ochs, which determines how many times the entire 
dataset is processed. For each epoch, the algorithm 
goes through individual image-label pairs from the 
training set. At each step, the trainable parameters 
theta, which correspond to the rotation angles in the 
RX gates of the quantum circuit, are updated for the 
current input image. The updated values are then 
assigned to the circuit’s parameters, adjusting the 
quantum circuit to process the image. Using these 
results, the loss function is computed by compar-
ing the circuit’s outputs with the actual label for 
the image, quantitatively determining how well the 
circuit performs the classification task. Finally, the 
trainable parameters are updated using an optimiza-
tion method, such as gradient descent, to improve 
the circuit’s performance in the next iteration. This 
process is repeated for each data point and contin-
ues for the specified number of epochs, gradually 
enhancing the model’s ability to classify digits.

The TEST procedure focuses on evaluating the 
performance of the quantum model on a separate test 
dataset. The process begins by initializing an emp-
ty list to store predictions. For each test image, the 
optimal theta parameters, which were learned dur-
ing the training phase, are assigned to the quantum 
circuit. As in the training procedure, the circuit is 
then transpiled and executed on a quantum backend. 
After execution, the measurement probabilities for 
different quantum states are collected. These prob-

abilities are analyzed to determine the most likely 
class or label for the image, forming the predicted 
classification. The prediction is then added to the 
list of results. This process is repeated for all images 
in the test dataset. Once all predictions have been 
made, the list is returned, providing the final output 
of the model’s performance on unseen data. This 
testing phase is crucial for assessing the generaliza-
tion capability of the quantum model and ensuring 
its ability to accurately classify new images beyond 
the training set.

2.3. Classical Neural Network Architecture
To address the image classification task using 

the MNIST dataset, a simple classical neural net-
work architecture can be utilized. This architecture 
consists of three main layers: an input layer, one or 
more hidden layers, and an output layer. The input 
layer contains 784 neurons, corresponding to each 
pixel in the 28x28 image, where the pixel values are 
normalized within the range of 0 to 1.

The hidden layers can be implemented using 
fully connected (dense) neurons. For example, a sin-
gle hidden layer with 128 neurons using the ReLU 
(Rectified Linear Unit) activation function can be 
effective for feature extraction from the images. Af-
ter processing in the hidden layers, the output layer 
consists of 10 neurons, each corresponding to one 
of the ten digits (from 0 to 9). The softmax activa-
tion function is used in the output layer, providing 
a probability for each class, which allows for easy 
interpretation of the classification results. 

Figure 3 – Classical Architecture with CNN for the MNIST Dataset
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This architecture is basic and can be further im-
proved using regularization methods, such as drop-
out, to reduce the likelihood of overfitting. To opti-
mize the model training process, loss functions such 
as categorical cross-entropy were also employed.

2.4. Hybrid Quantum Neural Network Architec-
ture

On the other hand, a hybrid quantum neural 
network architecture that combines classical and 
quantum approaches represents a more complex 
and innovative approach to classifying images from 
MNIST. In this architecture, the initial part of the 

model can remain classical, where images first pass 
through several fully connected layers for feature 
extraction, similar to the simple architecture.

However, after feature extraction, the classical 
part of the network will interact with the quantum 
part. For this, PQC can be used, which accept data 
in the form of amplitudes obtained from the previ-
ous stage. This quantum part of the network is re-
sponsible for complex nonlinear transformations, 
which can lead to improved classification quality, 
especially in tasks where traditional approaches 
have limitations.

Figure 4 – Architecture of a Hybrid Quantum-Classical Neural Network

As the output layer, a classical structure with 10 
neurons and a softmax activation function can be 
used again to obtain class probabilities. This hybrid 
approach leverages the strengths of both classical 
and quantum methods, providing a deeper repre-
sentation of the data and potentially improving clas-
sification accuracy on MNIST compared to purely 
classical architectures.

2.5. Combining Classical and Quantum Results
Decision Making: The final classification of ac-

tions is determined by combining the results from 
both the CNN and QNN components. This can be 
achieved using methods like weighted averaging or 
summation, where the predictions from each model 
contribute to the final decision.

To integrate quantum and classical neural net-
works into our hybrid network, we include a hidden 
layer known as the PQC (discussed in section 2.2). 
The circuit uses the classical input vector to set the 
rotation angles of quantum gates. The outputs from 
the previous layer of the neural network are fed as 
inputs into this parameterized circuit. The measure-
ment statistics from the parameterized circuit are 
collected and used as input for the subsequent neu-
ral network layer. This process continues until the 
final output layer is reached.

3. Results and Discussion 

In this section, we present the experimental re-
sults of our proposed the hybrid quantum-classical 
neural network (QCNN) model. The experiments 
were conducted on a computer equipped with an 
Nvidia RTX 4080 GPU. Despite the availability of 
high-end quantum computing platforms from com-
panies such as IBM and Google, these services are 
currently not accessible in certain regions. This lim-
itation significantly hampers the ability of research-
ers and developers from CIS countries, including 
Kazakhstan, to leverage cutting-edge quantum tech-
nologies for their projects. 

Nevertheless, various strategies can help miti-
gate these access barriers and will be explored in fu-
ture studies. Partnerships and academic agreements 
can often grant subsidized or specialized access, 
even in areas with regulatory hurdles. Additionally, 
cloud quantum services from providers like Ama-
zon Braket and Microsoft Azure Quantum represent 
promising alternatives. In future studies, these ap-
proaches expand the scope of cutting-edge experi-
ments and promote inclusive growth in the quantum 
research community despite existing geographic 
limitations.
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Figure 5 – Results of the quantum circuit for image classification in the hybrid QCNN

In the circuit, the theta angles are specifi-
cally designed for use with RX gates, which 
are applied to the qubits. The procedure is re-
peated for each qubit by applying an RX gate 
parameterized with the corresponding angle, 
effectively preparing the qubits for subsequent 
quantum operations. After applying these gates, 
a barrier is introduced, which marks the end of 
the initial circuit preparation phase. After cross-
ing the barrier, a random circuit is added, creat-
ing additional entanglement between the qubits, 
enhancing the circuit’s ability to capture com-
plex relationships in the data. Finally, the circuit 
measures all the qubits, enabling result extrac-
tion after execution, and the number of repeti-

tions for quantum execution is set, determining 
how many times the circuit will be run to gather 
statistics from the measurement results.

In the case of the MNIST dataset, comparing 
the performance of a classical CNN and the hybrid 
model reveals important insights into how well each 
model handles digit recognition tasks. For the clas-
sical CNN, the training accuracy is 0.92, indicating 
that the model successfully learned from the train-
ing data. This accuracy is consistent with the test ac-
curacy of 0.92, showing that the model generalizes 
well to unseen data. The close alignment of these 
accuracy values suggests that the CNN is not over-
fitting and has effectively learned the features of the 
MNIST dataset.

Figure 6 – Accuracy and Loss During Neural Network Training and Testing
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Regarding losses, the CNN shows a training loss 
of 0.5 and slightly lower test loss of 0.4. This reduc-
tion in loss between the training and testing phases 
reflects improved model performance when applied 
to unseen data. The low loss values also confirm that 
the CNN is effectively optimizing, minimizing the 
error between predicted and actual digit labels.

For the MNIST dataset, the performance of the 
hybrid QCNN shows improvements over the clas-

sical CNN in both accuracy and generalization. 
During training, the hybrid QCNN achieves an 
accuracy of 0.95, higher than the classical CNN’s 
0.92, indicating that the hybrid model is learning 
the dataset features more effectively. Furthermore, 
the test accuracy of 0.96 demonstrates that the 
model generalizes even better to unseen data com-
pared to the CNN, where test accuracy remained 
at 0.92.

Figure 7 – Loss and Accuracy Results for the hybrid QCNN

However, the loss values for the hybrid QCNN 
are slightly higher than those of the classical CNN. 
The training loss stands at 0.6, while the test loss 
decreases to 0.5, reflecting a general reduction in 
error as the model is tested on new data. This indi-
cates that while the hybrid QCNN achieves higher 
accuracy, further optimization or parameter tuning 
may be needed to reduce training losses. Nonethe-
less, the lower test losses show that the model per-
forms better with unseen data, effectively capturing 

the complexity of the MNIST dataset compared to 
the classical approach.

The image displays the results of the hybrid 
QCNN model trained to recognize handwritten 
digits from the MNIST dataset. The model’s pre-
dictions for a sample set of digits are as follows: 4, 
2, 4, 6, 8, 1, 5, and 7. These predictions match the 
corresponding images, demonstrating that the hy-
brid QCNN successfully recognizes the handwritten 
digits.

Figure 8 – MNIST Classification Results Using Hybrid QNN
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This result highlights the model’s effectiveness, 
particularly in terms of generalizing across various 
handwriting styles, which is a critical challenge in 
the MNIST dataset. Given that this is a hybrid quan-
tum part of the model, it underscores the potential of 
combining quantum neural networks with classical 

methods to improve accuracy in image recognition 
tasks, such as digit classification.

The comparison between the classical CNN and 
the hybrid QCNN for the MNIST dataset shows sig-
nificant differences in performance, as illustrated in 
Table 1.

Table 1 – Comparison of Classical CNN and Hybrid QCNN for MNIST Dataset 

Computation type train test
CNN accuracy 0.92 0.92

CNN loss 0.5 0.4
Hybrid QCNN accuracy 0.95 0.96

Hybrid QCNN loss 0.6 0.5

The CNN achieved an accuracy of 0.92 on both 
the training and test datasets, with corresponding 
losses of 0.5 during training and 0.4 during testing. 
This indicates that the model generalizes well to 
both sets, maintaining stable performance without 
overfitting or underfitting.

In contrast, the hybrid QCNN outperformed the 
classical CNN in terms of accuracy, reaching 0.95 
on the training set and 0.96 on the test set. However, 
the loss values were higher compared to the CNN: 
0.6 for training and 0.5 for testing. While the hybrid 
QCNN demonstrates better accuracy, the increased 
losses suggest that it may converge more slowly or 
may require further tuning, especially regarding pa-

rameters and entanglement layers in the quantum 
part of the model.

The comparison of execution times for classi-
cal and quantum approaches highlights different 
performance characteristics for both types of com-
putations. The classical CNN running on a CPU 
took 30.065432 seconds, while the same classical 
CNN executed on an Nvidia RTX 4070 GPU dem-
onstrated significant acceleration, completing in just 
12.012345 seconds. This underscores the substan-
tial advantage of using GPUs for parallel operations 
typical of CNNs, where GPU architecture excels in 
handling large-scale matrix multiplications and con-
volutions.

Table 2 – Comparison of Model Execution Time on Different Devices 

Computation type Device Time (seconds)
Classical CNN CPU 30.065432 
Classical CNN Nvidia RTX 4070 12.012345 
Hybrid QCNN QASM Simulator 36.123456 
Hybrid QCNN Statevector Simulator 28.038765 

Conversely, modeling the hybrid QCNN shows 
a different performance profile. The QASM simula-
tor, which models quantum circuits with measure-
ment processes, took 36.123456 seconds, reflecting 
the computational complexity associated with simu-
lating quantum operations on classical hardware. 
However, the statevector simulator, which only 
simulates the evolution of quantum states without 
measurement, was faster, completing its task in 

28.038765 seconds. This result indicates that the 
statevector simulator can handle quantum opera-
tions more efficiently than the QASM simulator, but 
both are still slower compared to the classical CNN 
running on a GPU.

Losses when using quantum models can arise 
for several reasons. One of the key issues is quan-
tum noise and errors that accumulate due to imper-
fections in quantum gates and measurements, which 
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is particularly critical for complex quantum algo-
rithms requiring numerous operations. Addition-
ally, the limited coherence of qubits–the time during 
which they can maintain their quantum state–means 
that longer operations are susceptible to decoher-
ence. Due to these factors, some quantum models 
become challenging to work with and less efficient 
than expected.

Overall, while quantum simulators bring the 
potential for new computational paradigms, clas-
sical GPUs remain significantly better in terms of 
pure speed for CNN tasks. As quantum hardware 
evolves, this performance gap may narrow, but for 
now, quantum simulation remains a more compu-
tationally intensive process compared to highly op-
timized classical computations on modern GPUs. 
Moreover, the hybrid QCNN demonstrates superior 
predictive accuracy, highlighting the potential ben-
efits of quantum computing in neural network ar-
chitectures, although it may still face optimization 
and convergence challenges, as evidenced by higher 
loss values compared to CNN.

5. Conclusions

In conclusion, this study examined the integra-
tion of hybrid quantum-classical neural networks 
into image recognition tasks using the MNIST da-
taset, providing a comprehensive analysis of their 
performance compared to traditional CNNs. The 
primary objective was to assess the advantages and 
limitations of quantum neural networks in practical 
machine learning tasks, particularly in digit classifi-
cation, which serves as a benchmark problem in the 
field of computer vision.

The classical CNN demonstrated reliable and 
stable performance, achieving an accuracy of 92% 
on both training and test datasets, accompanied by 
relatively low loss values. These results align with 
the expected outcomes from a well-tuned classical 
model, showcasing its ability to generalize across 
different datasets without significant performance 
degradation. In contrast, the hybrid QCNN exhib-
ited a promising leap in accuracy, surpassing the 
CNN with a training accuracy of 95% and a test-
ing accuracy of 96%. These findings indicate that 
the integration of quantum computing, even in a 
hybrid form, can substantially enhance the learning 
and generalization capabilities of neural networks. 

The quantum component of the hybrid QCNN intro-
duces unique data processing mechanisms, leverag-
ing properties such as superposition and entangle-
ment, which allow the model to explore broader 
and more complex solution spaces and potentially 
uncover deeper patterns in the data. This advantage 
was particularly evident in the higher testing accu-
racy of the model, indicating its ability to generalize 
beyond the training set.

However, despite the higher accuracy, the hy-
brid QCNN exhibited higher loss values during 
both training and testing, indicating a potential 
trade-off between accuracy and model optimiza-
tion. This increase in loss suggests that, while the 
hybrid QCNN system is effective at yielding ac-
curate predictions, its optimization may be more 
challenging due to the additional complexity in-
troduced by the quantum level. The issues of con-
vergence and parameter tuning in quantum circuits 
represent areas that require further refinement. 
Higher losses may be associated with entangle-
ment layers or the design of quantum gates, which 
might necessitate more sophisticated optimization 
methods or deeper parameterized quantum circuits 
for smoother learning dynamics.
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