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Abstract. This paper presents an approach to constructing adaptive one-dimensional computational 

grids using the Beltrami equation and Physics-Informed Neural Networks (PINNs). The main focus is on 
exploring the potential for precise control of grid node density through the control function ω(s), which 
allows the grid to adapt to the local features of the problem. The Beltrami equation used, being a key 
component of the method, regulates the distribution of nodes by modifying the function’s derivatives 
depending on the values of the control function. The effectiveness of this approach is demonstrated 
through examples involving one and two regions of node clustering. 

The results showed that the PINN method combined with the Beltrami equation allows for the 
creation of computational grids with a high degree of adaptation to given conditions, providing detailed 
modeling in critical regions. This approach has advantages over traditional numerical methods, as 
integrating physical laws in the grid construction process minimizes numerical errors and improves 
modeling accuracy. The use of neural networks offers flexibility in model tuning and the ability to 
account for complex nonlinear dependencies. The discussion of the results highlights the potential of 
using PINNs for adaptive grid construction in various fields requiring precise and efficient modeling. In 
conclusion, this study confirms that the combination of the Beltrami equation and PINNs is a powerful 
tool for adaptive grid construction, opening new possibilities for numerical modeling of complex 
physical processes. 
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Networks, Mesh Optimization, Numerical grids. 

1. Introduction

The construction of computational grids plays a 
key role in numerical modeling and solving 
problems in mathematical physics. Grids are used to 
discretize continuous domains, enabling 
computations through numerical methods such as 
the finite element method or the finite difference 
method [1]. The quality of the computational grid 
significantly affects the accuracy and convergence 
of the solution: overly coarse elements can lead to 
significant errors, while overly fine grids may result 
in excessive computational costs. An optimal grid 
should adapt to the features of the domain's 
geometry and the solution's gradients, ensuring a 
balance between accuracy and efficiency [2]. 
Various algorithms exist for the automatic 
generation and adaptation of computational grids, 
which improve the quality of modeling complex 
physical processes and minimize computational 
resources.

In modern numerical modeling methods, several 
approaches to constructing adaptive computational 
grids exist, which enhance computational accuracy 
and the efficiency of problem-solving [3]-[8]. Each 
method has its own advantages and disadvantages, 
and the choice of approach depends on the specifics 
of the problem, accuracy requirements, available 
computational resources, and the geometry of the 
domain. The use of adaptive computational grids 
can significantly improve the quality of numerical 
calculations and reduce errors in modeling complex 
physical processes [9].

One of the modern approaches that ensures high 
accuracy in grid construction is the use of the 
Beltrami equation, which enables the creation of 
adaptive grids [10]. The Beltrami equation, 
originating from complex analysis, describes 
deformations that preserve angles and control the 
degree of shape distortion. This equation allows for 
the construction of grids where the density and 
structure of cells can be locally adapted according to 
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specified conditions or a metric function. The 
application of the Beltrami equation in grid 
generation tasks provides controlled deformation of 
grid cells, minimizing errors and improving the 
convergence of numerical solutions.

Physics-Informed Neural Networks (PINNs) 
combine machine learning with physical laws to 
solve partial differential equations (PDEs) [11]. In 
this approach, the network is trained not only on data 
but also by incorporating physical equations into the 
loss function. This allows the network to 
approximate solutions to PDEs while minimizing 
errors with respect to the given equations and 
boundary conditions [12]. One of the main 
advantages of PINNs is their ability to effectively 
handle problems with complex geometry and 
account for nonlinear dependencies.

The article [13] examines the application of 
Physics-Informed Neural Networks (PINNs) for 
solving the equidistribution method equations used 
in adaptive grid construction. The equidistribution 
method ensures uniform node distribution to reduce 
numerical errors, while PINNs assist in solving the 
associated equations by minimizing deviations from 
physical laws [3]. The combination of these 
approaches allows for the efficient construction of 
grids that adapt to complex geometries and the 
physical features of the problem. The author 
demonstrates that the use of PINNs improves grid 
construction accuracy and reduces computational 
costs, making this method promising for modeling 
complex systems.

The application of PINNs for constructing 
computational grids enables adaptive changes in 
node density based on the local features of the 
problem, which is particularly useful for modeling 
processes with sharp gradients or localized features 
[14]. Specifically, for the Beltrami equation, which 
controls node distribution through a control 
function, PINNs can be used to efficiently manage 
grid density [15]. This allows for precise adaptation 
of the computational grid to the problem's 
conditions, enhancing modeling accuracy and 
reducing computational costs, making PINNs a 
promising tool for the numerical simulation of 
complex physical processes.

2. Materials and Methods

This study employs the Beltrami equations for 
constructing adaptive computational grids, enabling 

control over distortions and adaptation of the grid to 
the specific features of the problem. The Beltrami 
equation serves as the primary tool for describing 
quasiconformal mappings, which minimize shape 
distortions when transitioning between different 
spatial regions. 

For the numerical solution of the one-
dimensional Beltrami equation, used in adaptive 
grid construction, the following method is applied. 
The main equation is expressed as:

∂
∂ξ
�
∂𝑠𝑠𝑠𝑠
∂ξ
ω(𝑠𝑠𝑠𝑠)� = 0 

where ξ is the independent variable, 𝑠𝑠𝑠𝑠(ξ) is the 
desired function, and ω(𝑠𝑠𝑠𝑠) is the weight function 
that controls the influence of the derivative ∂𝑠𝑠𝑠𝑠

∂ξ
. This 

function ω(𝑠𝑠𝑠𝑠) plays a role analogous to the Beltrami 
coefficient in multidimensional problems and 
determines how the grid density changes.

To solve this equation numerically, the domain 
ξ ∈ [0,1] is divided into equal parts, forming a grid 
with nodes. The derivatives in the equation are 
approximated using the finite difference method. 
For example, the derivative of the function 𝑠𝑠𝑠𝑠 with 
respect to the variable ξ is approximated by the 
differences in the function's values at neighboring 
nodes:

∂𝑠𝑠𝑠𝑠
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
≈ 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖+1−𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖−1

2Δξ
.

Within the equation, an intermediate expression 
𝐴𝐴𝐴𝐴 is introduced, which is defined as the product of 
the derivative ∂𝑠𝑠𝑠𝑠

∂ξ
and the weight function ω(𝑠𝑠𝑠𝑠):

𝐴𝐴𝐴𝐴 = ∂𝑠𝑠𝑠𝑠
∂ξ
⋅ ω(𝑠𝑠𝑠𝑠).

For further calculations, an approximation of the 
derivative 𝐴𝐴𝐴𝐴 is required, which is also computed 
using finite differences:

∂𝐴𝐴𝐴𝐴
∂ξ
≈ 𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖+1−𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖−1

2Δξ
= 0.

This equation connects the values of the function 
and their derivatives at the grid nodes, allowing the 
construction of a system of linear equations that can 
be solved numerically. Standard methods, such as 



32

Application of pinn and the method of differential construction of adaptive one-dimensional computational grids

the Thomas algorithm for tridiagonal matrices or 
iterative methods, can be used to solve such a 
system.

An important step is verifying the convergence 
of the solution to ensure that the numerical 
approximation is sufficiently accurate. Ultimately, 
this algorithm provides a solution that adapts to the 
local features of the problem, ensuring precise 
distribution of the grid nodes.

Physics-Informed Neural Networks (PINNs) are 
a modern method for solving partial differential 
equations (PDEs) that combines machine learning 
approaches with physical laws, enabling the 
accurate modeling of complex systems. The core 
idea of PINNs is that the neural network is trained 
not only on data but also on the physical meaning of 
the problem, which is encoded through equations in 
the loss function. This approach allows PINNs to 
approximate the solution to PDEs by minimizing the 
difference between predicted values and theoretical 
results encoded in the equations.

In solving the Beltrami equation using PINNs, 
the network takes coordinates as input and returns 
the values of a function approximating the solution 
of the equation. The network is built with several 
hidden layers and a small number of neurons to have 
sufficient power to model dependencies in the data, 
without being overly complex. A crucial part is 
constructing the loss function, which takes into 
account both the boundary conditions and the 
Beltrami equation itself. This is achieved by using 
automatic differentiation in PyTorch, which allows 
computing the derivatives of the neural network 
with respect to the input variables and incorporating 
them into the equation's expression.

Let us consider the one-dimensional Beltrami 
equation described earlier:

∂
∂ξ
�∂𝑠𝑠𝑠𝑠
∂ξ
ω(𝑠𝑠𝑠𝑠)� = 0,

where ω(𝑠𝑠𝑠𝑠) is the weight function controlling the 
local adaptation of the grid. To solve this equation 
using PINNs, we use a neural network that 
approximates the function 𝑠𝑠𝑠𝑠(ξ). First, a loss function 
is defined based on the equation's expression and the 
boundary conditions. For instance, the derivatives 
from the network that correspond to ∂𝑠𝑠𝑠𝑠

∂ξ
and ∂𝐴𝐴𝐴𝐴

∂ξ
, where 

𝐴𝐴𝐴𝐴 = ∂𝑠𝑠𝑠𝑠
∂ξ
⋅ ω(𝑠𝑠𝑠𝑠), are computed automatically and 

compared to zero as the target of the loss function. 

Thus, minimizing the loss function leads to the 
solution of the equation over the entire domain.

The code developed as part of this work 
implements a PINN to solve the one-dimensional 
Beltrami equation using PyTorch. The neural 
network is designed with 10 hidden layers, each 
containing 5 neurons, and the sigmoid activation 
function is applied after each layer to capture 
nonlinearity. The Adam optimization algorithm is 
used to update the network parameters during each 
iteration based on the gradient of the loss function, 
which accounts for both the boundary conditions
and the equation itself. The boundary loss is 
computed by measuring the difference between the 
network's output and the expected values at the 
boundaries, while the PDE loss is based on the 
expression for ∂𝐴𝐴𝐴𝐴

∂ξ
.

Once the training is complete, the network can 
predict the values of the function 𝑠𝑠𝑠𝑠(ξ),
corresponding to the solution of the Beltrami 
equation. The results can be visualized in 3D plots 
to evaluate the accuracy of the predictions.

In summary, the code developed in this study 
demonstrates that PINNs can accurately and 
efficiently solve complex grid construction 
problems by fully incorporating physical laws into 
the training process, expanding the potential of 
numerical modeling.

3. Results

This study presents an approach for constructing 
adaptive one-dimensional computational grids using 
the Beltrami equation and Physics-Informed Neural 
Networks (PINNs). The primary focus was on 
analyzing the effect of the control function ω(𝑠𝑠𝑠𝑠) on 
the grid node distribution. The simulation results 
demonstrated that the combination of the Beltrami 
equation and neural networks effectively controls 
node density, allowing the grid to adapt to specific 
regions of interest.

In the initial phase of the study, a scenario was 
examined where the control function ω(𝑠𝑠𝑠𝑠) was 
concentrated around the coordinate 0.3. As shown 
in Figure 1, the grid nodes cluster near this point, 
which aligns with the specified control function 
ω(𝑠𝑠𝑠𝑠). This function takes into account the 
contribution of a term centered at 0.3 with a 
clustering parameter of α0 = 0.015. The shape of 
the function minimizes numerical errors in the 
region with a higher node density, which is 
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particularly important for modeling processes with 
sharp gradients or localized features. This clustering 
improves the model's resolution in critical regions, 
as confirmed by the uniform distribution of nodes 
around the specified coordinate, while the grid 
remains less dense in other areas.

Figure 1 – Grid clustering near coordinate 0.3

In the second phase, the grid was adapted to 
account for two clustering regions specified by a 
control function centered at coordinates 0.3 and 0.7.
As seen in Figure 2, the grid shows pronounced 
clustering near both coordinates. The control 
function in this case is the sum of two modifying 
terms, each creating its own clustering zone. 
Consequently, the grid adapts to both regions, 
increasing the local density of nodes. This approach 
enables efficient modeling of processes that require 
detailed focus in multiple areas simultaneously, 
such as when multiple zones with steep gradients are 
present. The resulting grid confirms that the 
combination of PINNs with the Beltrami equation 
and an appropriately chosen control function can 
successfully adapt the grid to solve problems with 
various localized features.

Discussing the results, it is important to 
highlight that grid adaptation using the Beltrami 
equation and PINNs offers several advantages over 
traditional grid generation methods. First, this 
approach allows for the seamless integration of 
physical laws into the grid construction process, 
enhancing both the accuracy and stability of the 
solution. In this case, the Beltrami equation serves 
as a tool to control node density, enabling local grid 
adaptation based on the values of the control 
function. This is particularly valuable for problems 
with heterogeneous conditions, where high 

resolution is needed in specific regions. Second, the 
use of neural networks provides flexibility in 
selecting model parameters and allows for capturing 
complex relationships between grid nodes and the 
control function.

However, despite the successful application of 
the method for problems with predefined clustering 
regions, several limitations of the approach should 
be considered. In particular, the sensitivity of the 
results to the choice of parameters for the control 
function ω(𝑠𝑠𝑠𝑠) can affect the node distribution, 
requiring precise tuning for each specific problem. 
This may complicate the use of the method in 
problems with dynamically changing conditions, 
where the parameters of ω(𝑠𝑠𝑠𝑠) would need to adapt 
in real-time. Another challenge is the high 
computational cost associated with training the 
neural network, especially when using complex 
architectures and a large number of nodes.

Figure 2 – Grid clustering near coordinates 0.3 and 0.7

Moreover, an important direction for future 
research is the analysis of the method’s stability and 
accuracy with different types of control functions. In 
this study, simple functions with one or two 
clustering peaks were used, but there are situations 
where a more complex form of ω(𝑠𝑠𝑠𝑠) may be 
required, such as a smooth variation in node density 
across the entire domain. Investigating such 
functions could open new possibilities for applying 
the method in various scientific and engineering 
fields, including aerodynamics, hydrodynamics, and 
the modeling of complex physical processes.

Thus, the results of this work demonstrate the 
potential of using the Beltrami equation and PINNs 
for adaptive grid construction, showing the high 
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efficiency of the method in problems with localized 
features. This opens up prospects for further 
development of the approach, aiming to improve 
grid adaptation in the context of complex and 
dynamically changing physical processes, which 
could significantly broaden the method’s 
application in engineering and scientific practice.

5. Conclusions

This study examined an approach for 
constructing adaptive one-dimensional 
computational grids using the Beltrami equation and 
Physics-Informed Neural Networks (PINNs). The 
main goal of the research was to explore the 
potential of this method for precise control of grid 
node density, which is crucial when modeling 
processes with sharp gradients or localized features. 
The results showed that the combination of the 
Beltrami equation with PINNs enables effective grid 
adaptation to specified regions of interest by 
modifying the control function ω(s). This approach 
demonstrates high flexibility in grid configuration, 
which is especially important in tasks that require 
localized node clustering to enhance modeling 
resolution.

An important aspect of this work was the 
confirmation that neural networks can successfully 
integrate physical principles into the grid adaptation 
process. By using the Beltrami equation, which 
governs node distribution through the control 
function, a balance is achieved between the need for 
detailed representation in certain areas and the 
overall numerical stability and efficiency of the 
calculations. It was shown that the PINN method, 
due to its ability to approximate complex nonlinear 
dependencies, enables the construction of adaptive 
grids that are better suited to the specifics of the 
modeled processes compared to traditional 
numerical approaches.

The conclusion of this work highlights the 
promising potential of PINNs for grid construction 

tasks, particularly in the context of the Beltrami 
equation. The method demonstrated its advantages 
in controlling grid density and showed the ability to 
create highly adaptive grid structures that can be 
effectively applied to a wide range of scientific and 
engineering problems. At the same time, the results 
indicate the need for further research focused on 
optimizing the control function parameters and 
developing approaches for automatic grid 
adaptation in the context of changing physical 
conditions of the problem. Additionally, further 
exploration of the method’s stability and accuracy 
for more complex multidimensional cases and 
dynamically changing systems will be an important 
step in expanding the application of PINNs to 
adaptive grid construction.

Thus, the conducted study confirms that the use 
of the Beltrami equation and PINNs for adaptive 
grid construction is a promising direction that opens 
new possibilities for numerical modeling of 
complex physical processes. The development of 
this approach will improve the quality of 
simulations and significantly expand the application 
of adaptive grids in various high-tech fields, such as 
aerodynamics, hydrodynamics, and other areas of 
engineering and science that require precise and 
efficient numerical solutions.
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