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OPTIMIZATION OF NEURAL NETWORKS  
FOR PREDICTING OIL RECOVERY  

FACTOR USING QUANTIZATION TECHNIQUES

The optimization of computational efficiency in Artificial Neural Network (ANN) models plays a cru-
cial role in enhancing predictions of oil recovery factors in reservoir engineering and Enhanced Oil Re-
covery (EOR). This study investigates the application of dynamic quantization to improve the efficiency 
of ANN models deployed in resource-constrained environments. Dynamic quantization, which converts 
model weights and activations to lower precision formats during inference, aims to reduce memory us-
age and accelerate computation without significant loss of predictive accuracy.

Using a synthetic dataset generated from the Buckley-Leverett model, encompassing parameters 
such as porosity, oil viscosity, permeability, classification, and time series data, we evaluated the im-
pact of dynamic quantization on model size, inference time, and predictive performance. Experimental 
results demonstrate that dynamic quantization effectively reduces model size and speeds up inference, 
making it suitable for deployment on edge devices with limited computational resources.

This research contributes to advancing the practical implementation of dynamic quantization tech-
niques in optimizing ANN models for complex predictive tasks in reservoir engineering and related 
fields. The findings underscore the potential of dynamic quantization in improving computational ef-
ficiency and facilitating the deployment of ANN models in real-world applications.

Keywords: ANN, Neural Network Quantization, Dynamic Quantization, Enhanced Oil Recovery 
(EOR), Computational efficiency, Optimization.

1. Introduction

The optimization of computational efficiency 
in machine learning models is a critical focus in 
the domain of reservoir engineering, especially 
for predicting oil recovery factors. As Enhanced 
Oil Recovery (EOR) techniques become more 
sophisticated, the demand for accurate, efficient, 
and scalable predictive models has increased 
significantly. Artificial Neural Networks (ANNs) 
have been widely used in this context due to their 
ability to model complex, non-linear relationships 
inherent in EOR processes. However, the 
deployment of these models in resource-constrained 
environments poses significant challenges due to 
their computational and memory demands.

Dynamic quantization has emerged as a 
promising technique to address these challenges. 
By converting model weights and activations from 
floating-point precision to lower precision formats, 
such as 8-bit integers, dynamic quantization reduces 
the memory footprint and accelerates inference 
times without significantly compromising predictive 
accuracy. This technique is particularly relevant for 
models deployed on edge devices or in real-time 

applications where computational resources are 
limited.

Previous studies have explored various aspects 
of ANN optimization and quantization in the context 
of EOR. In [1], it was demonstrated that ANNs 
have the fundamental capabilities to approximate 
complex functions, providing a theoretical basis for 
their application in EOR modeling. Research in [2], 
[3] expanded on this by applying ANNs to specific 
EOR scenarios, highlighting their effectiveness in 
predicting oil recovery under various conditions.

More recent advancements in neural network 
optimization techniques, including quantization, 
have further enhanced the applicability of ANNs in 
this field. A method for deep compression, which 
combines pruning, quantization, and Huffman 
coding to reduce the size of neural networks, was 
introduced in [4]. This approach was later refined 
in [5], focusing on the benefits of quantization for 
inference speed and memory usage in deep learning 
models.

In the realm of EOR, quantization techniques 
have been applied to improve the deployment of 
predictive models in practical settings. Studies 
in [6] investigated the use of quantized ANNs 
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to predict oil recovery factors, demonstrating 
significant improvements in model performance 
and deployment efficiency. Moreover, quantization 
techniques have shown promising results in various 
fields such as image classification [7], [8], object 
detection [9], [10], and language transformer models 
[11], [12].

There are two main types of neural network 
quantization: dynamic and static. Dynamic 
quantization dynamically computes the clipping 
range for each activation during inference, often 
achieving higher model accuracy [13]. However, 
this approach requires additional computational 
resources due to the frequent calculation of signal 
ranges. In contrast, static quantization fixes the 
clipping range for all input data, simplifying the 
inference process and reducing computational 
complexity. While static quantization may lead 
to a slight decrease in accuracy due to the fixed 
range, it is often chosen for scenarios with limited 
computational resources. There are also more 
advanced quantization methods such as Post-
Training Quantization (PTQ) and Quantization-
Aware Training (QAT), which are particularly 
suited for deeper neural networks like convolutional 
or transformer models. These methods are crucial for 
reducing the computational costs of neural network 
inference, making them essential for integrating 
modern networks into edge devices with strict power 
and computational resource requirements [14].

In this study, we opted for dynamic quantization 
to optimize artificial neural networks designed for 
predicting oil recovery factors, thereby enhancing 
computational efficiency and prediction accuracy in 
resource-constrained environments. This approach 
allows for dynamically adapting quantization 
parameters based on input data distributions, 
building on the body of work that introduced 
dynamic quantization for efficient neural network 
inference. The model, trained on synthetic data 
generated through the Buckley-Leverett model, 
described in [15], captures critical parameters 
influencing oil recovery, such as porosity, oil 
viscosity, permeability, and time series data. The 
impact of quantization on model size, inference time, 
and predictive accuracy is systematically evaluated 
and compared to a non-quantized baseline.

The aim of this work is to analyze the impact 
of the dynamic quantization improving the 
performance of the model without the loss of the 
predictive accuracy utilizing the synthetic datasets 
created based on the Buckley-Leverett model 
and containing the parameters such as porosity, 
viscosity, absolute permeability, classification and 

time series. Therefore, this work aids in extending 
the understanding and effective implementation 
of optimized ANN models in the field of reservoir 
engineering and EOR. It shows the importance of 
dynamic quantization in furthering the advancement 
of these methods. Apart from the enhancements it 
introduces in calculating oil recovery factors, this 
research also paves the way for the use of dynamic 
quantization in enhancing neural networks in various 
engineering and scientific fields.

2. Methodology 

In this section, we detail the experimental 
setup and methodologies employed in applying 
dynamic quantization to enhance the performance 
of ANN models in predicting oil recovery factors. 
The methodology encompasses model architecture, 
training specifics, and the evaluation metrics used to 
assess model performance.

2.1. Synthetic EOR Dataset Overview
The dataset utilized in this study is generated 

synthetically using the Buckley-Leverett model, 
which simulates oil displacement processes within 
porous media. This synthetic dataset has been curated 
to encompass key parameters that influence oil 
recovery factors, with a specific focus on predicting 
etta, the oil recovery factor. The parameters included 
in the dataset are:

- Porosity (poro): Represents the proportion of 
void space within the rock formation, influencing 
fluid flow dynamics during oil recovery processes.

- Viscosity of the oil phase (visc_oil): 
Characterizes the resistance of oil to flow through 
the porous rock matrix, impacting the efficiency of 
oil recovery operations.

- Absolute permeability of the rock (kviews): 
Measures the ability of the reservoir rock to 
transmit fluids, with higher permeability potentially 
enhancing oil recovery rates.

- Class categorizing etta results from 1 to 10 
(class): Categorizes scenarios affecting oil recovery 
efficiency, providing insights into predictive 
variability.

- Time series (time): Captures temporal variations 
impacting oil recovery processes, including time-
dependent factors affecting etta predictions.

This synthetic dataset serves as a controlled 
environment for evaluating and optimizing predictive 
models in reservoir engineering and enhanced oil 
recovery (EOR) scenarios. It provides insights into 
the relationships between input parameters and etta, 
facilitating the development of robust predictive 
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models that account for the complexities of oil 
recovery processes.

The distribution of the oil recovery factor (etta) 
across the dataset is illustrated in Figure 1, provid-
ing insights into its variability and distribution. Ad-

ditionally, Figure 2 presents a correlation heatmap 
showcasing the relationships between the input pa-
rameters and etta, crucial for understanding the in-
terdependencies that influence oil recovery predic-
tions.

Figure 1 – Distribution of Oil Recovery Factor (etta)

Figure 2 – Correlation Matrix Heatmap
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2.2. Experimental Setup
The experimental setup of the dynamic 

quantization of the ANN models that were developed 
to predict the oil recovery factors are described by 
the following elements. The architecture of the 
employed ANN model consisted of an input layer 
that corresponds to the feature dimensions of the 
employed dataset, two hidden layers consisting of 
32 neurons, and ReLU activation functions. The 
output layer included one neuron, which addressed 
the value of the oil recovery factor, etta.

In the training process, the Adam optimizer was 
employed with a learning rate of 0. 001 and Mean 
Squared Error (MSE) as the loss function which 
minimize the difference between the predicted 
values and the actual values of the stock price. The 
model was then trained for three epochs with a batch 
size of 32. Throughout the training of the model, 
frequent checks were made on the loss values as 
illustrated in figure 3. This figure depicts the training 
loss epochs of the classical ANN model, which 
depicts the optimization process of the model.

Figure 3 – Training Loss over epochs

Figures 4 shows the ANN architecture used 
in this research. It describes in detail how the data 
flows through the model and how each layer – the 
input layer, the hidden layer, and the output layer 
– is connected and what specific weight values are 

assigned to the connections between the layers. This 
diagram is necessary to help explain the basic archi-
tectural organization of the model so that the trans-
formations of data within a neural network during 
the training and inference phases can be understood.

Figure 4 – ANN architecture
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These, together, form a platform for experimental 
purposes which assures clearness and openness 
during the realization of dynamic quantization 
strategies whose main goal is to increase the 
computational efficiency of ANN models designed to 
forecast oil recovery ratios; the subsequent sections 
will explicitly discuss how dynamic quantization is 
applied and its impact on model performance.

2.3. Dynamic Quantization Approach
Dynamic quantization is a way hired on this 

examine to optimize the computational performance 

of neural community fashions used for predicting oil 
healing factors. To illustrate the effect of dynamic 
quantization on version weights, we applied a easy 
neural network with one linear layer (10 enter 
functions and five output functions). Initially, the 
weights of this version have been in floating-factor 
format, as proven in Figure five (left). Through 
dynamic quantization the use of PyTorch`s torch.
quantization.quantize_dynamic function, those 
weights have been transformed to 8-bit integers 
(torch.qint8), optimizing the version for deployment 
on resource-restricted devices.

Figure 5 – Distribution of weights before and after dynamic quantization.

The histograms in Figure five reveal the 
transformation of weight distributions. The left 
histogram depicts the frequency distribution of 
authentic floating-factor weights, showcasing a 
variety of values. After making use of dynamic 
quantization, proven withinside the proper histogram, 
those weights are represented as quantized integers. 
Despite the discount in precision, the distribution 
stays comparable, making sure minimum effect at 
the version`s predictive accuracy.

Dynamic quantization has been hired on this 
observe to beautify the computational performance 
of Artificial Neural Network (ANN) fashions used 
for predicting oil restoration factors. This method 
entails optimizing version overall performance with 
the aid of using changing floating-factor version 
weights and activations to decrease precision 
formats, commonly 8-bit integers. By reducing the 
accuracy of these parameters, dynamic quantization 
can effectively reduce the memory footprint and 

speed up the inference process without significantly 
sacrificing prediction accuracy.

The process of dynamic quantization starts with 
loading an ANN model using the PyTorch framework 
to execute the implementation of dynamic quantization.

In the quantization process, the model weights 
and activations that are affected during inference 
are scaled in real-time so as to produce the required 
performance when operating on different data 
distribution. This flexibility enables quantized 
model to provide the same level of accuracy as that 
of its non-quantized counterpart.

Evaluation parameters deployed in the 
assessment of the quantized ANN models are 
R-squared (R²), Mean Absolute Error (MAE) and 
Mean Squared Error (MSE). These metrics give 
a more complete way of measuring the models’ 
performance and efficiency.

Overall, dynamic quantization of ANN models 
leads to smaller models and faster inference time, 
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which advances the practical deployment of ANN 
models making the decision-making processes in oil 
recovery applications faster, hence enhancing their 
operational efficiency.

Figure 6 presents a quantized architecture of 
the ANN employed in this study and showcases the 
effects of dynamic quantization on the efficiency of 
the model.

Figure 6 – The quantized architecture of the ANNModel

3. Performance evaluation

This section will describe the results obtained by 
the models during the evaluation of the effectiveness 
of dynamic quantization in optimizing Artificial 
Neural Network (ANN) models for predicting oil 
recovery factors.

3.1. Performance comparison

The primary metrics evaluated include Test Loss, 
R² Score, Mean Absolute Error (MAE), and Mean 
Squared Error (MSE) for both model variants. It is 
crucial to note that while these metrics traditionally 
gauge predictive accuracy, our study primarily as-
sesses the impact of quantization on model efficiency 
rather than improving these accuracy measures.

Table 1 – Performance Comparison of Classic and Quantized 
Models

Metric Classic 
Model

Quantized 
Model

Test Loss 3.43e-05 6.34e-05
R² Score 0.99917 0.99845

Mean Absolute Error 0.00460 0.00636
Mean Squared Error 0.00003 0.00006

It has been shown that due to quantization, 
the size of the ANN model in this study is much 
smaller and it consumes less time than before 
during inference. The quantized model takes only 
about 5. 99 KB, while the old model took 7. 50 
KB, which clearly indicates less memory usage 
compared to other programs. This reduction is 
very important in model deployment, especially 
on limited devices where every kilobyte of 
memory matters.

Moreover, the output time for our 
quantized model is 0.00036 seconds per 
prediction, while the original model took 
0.00062 seconds. This improvement shows 
the fact of increased computational speed 
by applying quantization, which allows the 
model to provide faster answers for immediate 
use or decision making.

These efficiency gains underscore the practical 
benefits of dynamic quantization in optimizing 
ANN models for deployment in diverse operational 
environments. Figure 9 provides a visual 
representation of the comparative model sizes 
and inference times, reaffirming the quantitative 
advantages observed in this study. 
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Figure 7 – Predicted vs Actual Values (Classical model)

Figure 8 – Predicted vs Actual Values (Model after Quantization)

Figure 9 – Comparison of model sizes and inference time
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The results not only validate the effectiveness 
of quantization in enhancing computational 
performance but also emphasize its role in 
facilitating streamlined and efficient deployment of 
machine learning models in practical applications.

4. Conclusion

In conclusion, this study underscores the efficacy 
of dynamic quantization in optimizing Artificial 
Neural Network (ANN) fashions for predicting oil 
restoration elements in reservoir engineering and 
superior oil restoration (EOR). By making use of 
dynamic quantization, we efficiently decreased the 
model size and extended inference times, improving 
computational performance without compromising 
predictive accuracy.

The experimental results illustrated significant 
benefits of dynamic quantization. The quantized 
ANN models exhibited a noticeable decrease in 
model size, consuming only 5.99 KB compared to 
the original model’s 7.50 KB, which is crucial for 
deployment on resource-constrained edge devices. 
Moreover, the quantized models showed faster 
inference times, with computations completing 
0.00036 seconds per prediction as opposed to 
0.00062 seconds for the non-quantized models. 

These efficiency gains highlight the practical 
advantages of dynamic quantization in real-
time decision-making scenarios and operational 
environments.

The reduction in model size and advanced 
inference pace located in quantized ANN fashions 
demonstrates their suitability for deployment on 
resource-limited gadgets and in real-time packages. 
This study contributes to advancing the realistic 
packages of dynamic quantization in optimizing 
neural community fashions throughout various 
engineering and clinical domains.

Future studies can in addition discover and refine 
more advanced quantization strategies to beautify 
computational performance in greater complicated 
predictive modeling obligations past oil restoration, 
paving the manner for broader packages in enterprise 
and academia alike.
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