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CLASSIFICATION OF DANGEROUS ARRHYTHMIAS USING ECG 
SCALOGRAMS WITH DEEP CONVOLUTIONAL NEURAL NETWORKS

Аbstract. In modern medicine, the problem of detecting and classifying life-threatening arrhythmias 
based on ECG data remains relevant and critically important for continuous patient monitoring. This 
study is dedicated to developing a method for the automatic classification of six classes of dangerous 
arrhythmias using short ECG segments of 2 seconds duration. Existing methods for detecting dangerous 
arrhythmias require additional improvements to ensure high accuracy and efficiency. The goal of this 
research is to develop an effective method for the classification of dangerous arrhythmias to facilitate 
timely medical intervention. A unique method is proposed, based on transforming ECG signals into sca-
lograms using continuous wavelet transformation. For arrhythmia classification, the AlexNet neural net-
work is employed. The study utilizes data from the PhysioNet database and synthesized ECG data using 
the SMOTE method. Experimental investigations demonstrated a high accuracy of the proposed method, 
with an average accuracy of 98.7% for all arrhythmia classes, surpassing previously achieved maximum 
estimates by other researchers (93.18%). The study has been successfully completed, showcasing scien-
tific novelty and practical significance of the results. The proposed method not only improved existing 
accuracy estimates but also emphasized the potential of using scalograms and neural networks for rec-
ognizing dangerous arrhythmias from ECG data. This opens new horizons for continuous monitoring and 
timely medical intervention, enhancing the quality of patient care.
Key words: heart disease, arrhythmia, classification, deep convolutional neural networks, scalograms. 

1 Introduction

Cardiovascular diseases are the leading cause of 
death globally, claiming millions of lives each year. 
Within this broad category, cardiac arrhythmias—
irregularities in the heart's rhythm—pose 
significant risks, ranging from benign palpitations 
to severe conditions like ventricular fibrillation and 
atrial fibrillation. These life-threatening 
arrhythmias require immediate recognition and 
intervention to prevent catastrophic outcomes such 
as cardiac arrest or stroke. Electrocardiography 
(ECG) is the gold standard for detecting and 
diagnosing arrhythmias. It provides a non-invasive 
and real-time snapshot of the heart's electrical 
activity, enabling clinicians to identify abnormal 
rhythms. Despite its widespread use, interpreting 
ECG results accurately can be complex and 
requires considerable expertise. In emergency 
situations, the need for rapid and precise 
interpretation becomes even more critical. Recent
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advancements in medical technology and 
computational methods have introduced new 
possibilities for enhancing ECG analysis. Among 
these innovations, ECG scalograms have emerged 
as a powerful tool. Scalograms are time-frequency 
representations of ECG signals, created through 
wavelet transforms. Unlike traditional time-domain 
ECG readings, scalograms offer a detailed and 
multi-dimensional view of the signal, capturing both 
frequency and temporal information. This enriched 
representation can reveal subtle patterns and 
anomalies indicative of arrhythmias that might be 
overlooked in standard ECG analysis. The 
integration of machine learning and artificial 
intelligence (AI) with ECG scalograms further 
amplifies their diagnostic potential. AI algorithms 
can be trained to recognize specific arrhythmic 
patterns within scalograms, enabling automated and 
highly accurate detection. This synergy between 
advanced signal processing and AI not only 
enhances diagnostic precision but also significantly 
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reduces the time required for analysis, which is 
crucial in emergency care.In this article, we will 
explore the methodology behind ECG scalogram 
generation and their application in arrhythmia 
recognition. We will discuss the advantages of 
scalograms over traditional ECG interpretations 
and examine case studies where AI-driven 
scalogram analysis has been successfully 
implemented. By highlighting the cutting-edge 
developments in this field, we aim to underscore the 
transformative impact of ECG scalograms on 
improving the detection and management of life-
threatening arrhythmias, ultimately contributing to 
better patient care and outcomes. Throughout this 
research, our focus is on the problem of recognizing 
critically important cardiac arrhythmias using 
electrocardiogram (ECG) data. Arrhythmia disease 
presents a significant threat to cardiovascular 
health, with potentially life-threatening conditions 
such as ventricular flutter (VF), ventricular 
fibrillation (VF), and ventricular tachycardia (VT) 
demanding precise and timely diagnosis. Central to 
this diagnostic endeavor is the analysis of the QRS 
complex, a fundamental component of the 
electrocardiogram (ECG) signal that reflects 
ventricular depolarization. [1 – 4]. Recent advances 
in signal processing, particularly the adoption of 
Continuous Wavelet Transform (CWT), have 
provided a deeper understanding of arrhythmic 
patterns embedded within ECG signals [5]. 
Arrhythmia analysis also involves studying the 
characteristics of P- and T-waves [6], RR intervals 
[7], intervals between ECG waves. In addition to 
the morphological analysis of the ECG wave 
complex, spectral components of the signal are 
applied [8], continuous wavelet transformations, 
and independent component analysis. Through the 
generation of scalograms, CWT unveils intricate 
temporal and frequency characteristics inherent in 
these irregular rhythms, offering clinicians a richer 
dataset for classification. In tandem, the emergence 
of deep learning methodologies, exemplified by 
architectures such as AlexNet, has revolutionized 
the landscape of arrhythmia classification. By 
harnessing the power of Convolutional Neural 
Networks (CNNs), AlexNet can automatically 
extract discriminative features from ECG 
scalograms, facilitating accurate and efficient 
classification of dangerous arrhythmic patterns[9, 
10, 11]. In this article, we embark on an exploration 
of the intersection between signal processing and 
deep learning in the classification of deadly 

arrhythmias. We delve into the crucial role of the QRS 
complex in identifying VF, VF, and VT, elucidating 
the subtle nuances crucial for accurate diagnosis. 
Additionally, we examine how CWT and scalogram 
analysis enrich our understanding of ECG signals, 
providing clinicians with a comprehensive framework 
for classification. This article addresses the problem of 
classifying four categories of life-threatening 
arrhythmias based on short (2 seconds) segments of 
an electrocardiogram (ECG). The proposed 
classification reflects the level of threat to the patient's 
life, covering a scale from A1 to A4. Class A1 
represents the highest level of danger, requiring 
immediate resuscitation. Next are classes of dangerous 
ventricular arrhythmias (A2), supraventricular 
arrhythmias (A3), and sinus rhythm (A4) [1]. Each of 
these classes has its subclasses, as presented in Table 
1. Examples of ECG fragments for different classes of 
life-threatening arrhythmias are provided in Figures 
1-4. Moreover, we investigate the transformative 
potential of deep learning architectures like AlexNet 
in reshaping arrhythmia diagnosis. By leveraging large 
datasets of ECG scalograms, CNNs can discern 
complex patterns with unprecedented accuracy, 
empowering clinicians with actionable insights for 
patient care and intervention. Through this 
comprehensive review, we aim to underscore the 
profound impact of ad bvanced signal processing and 
deep learning in the classification of dangerous 
arrhythmias. By integrating these innovative 
methodologies, clinicians can enhance diagnostic 
accuracy, improve patient outcomes, and ultimately 
mitigate the risks associated with arrhythmia disease.

In the past few years, machine learning neural 
network models, especially those employing deep 
learning techniques, have emerged as remarkably 
effective instruments for analyzing electrocardiograms 
(ECG). Within this realm, convolutional neural 
networks (CNN) [9, 10, 11] are extensively utilized. 
These models can analyze both one-dimensional 
fragments of the original temporal ECG signal (1D-
CNN) [10, 12] and employ a two-dimensional 
representation of temporal segments (2D-CNN) [9, 
11]. The transformation of the ECG signal into an 
image has become feasible due to remarkable 
successes achieved in image analysis using deep neural 
networks. 

Various methods are employed to convert a one-
dimensional signal into a two-dimensional image, such 
as Short-Time Fourier Transform (STFT) – 
spectrograms [13], Continuous Wavelet Transform 
(CWT) – scalograms [9, 11], as well as Markov 
Transition Fields (MTF). These techniques allow 
efficient representation of temporal segments of the 
ECG signal as images, thereby simplifying the analysis 
process with the involvement of convolutional neural 
networks.
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Figure 1 – Fragment of critical arrhythmias necessitating immediate resuscitation (A1)

Figure 2 – Fragment of critical ventricular arrhythmias (A2)

Figure 3 – Fragment characterized by supraventricular arrhythmias (A3)

Figure 4 – Fragment of ventricular arrhythmias with potential life-
threatening consequences (C4)
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In recent years, there has been active research 
exploring the combination of Continuous Wavelet 
Transform (CWT) – scalograms with Convolutional 
Neural Networks (CNN). These studies are 
particularly relevant and closely related to the 
discussed topic. 

In their publication [15], the authors 
introduced a technique aimed at classifying five 
categories of cardiovascular ailments by utilizing 
orthogonal leads from ECG. Employing the PTB 
(Physikalisch-Technische Bundesanstalt) database, 
they employed signal preprocessing, segmentation, 
and Continuous Wavelet Transform (CWT). 
Classification was performed using a pre-trained 
convolutional neural network, specifically AlexNet. 
Remarkably, the model achieved exceptional 
accuracy in classification across the specified 
categories when operating on 3-second scalograms. 
This methodology laid the groundwork for the 
current investigation into identifying life-threatening 
arrhythmias.

In study [11], researchers conducted a 
comparative examination of deep machine learning 
models applied to biometrics utilizing ECG 
scalograms. They introduced a biometric 
recognition system that employed ECG signal 
scalograms and deep learning models to attain 
remarkable accuracy in biometric identification. 
Findings from the research suggest that the 
proposed method surpasses traditional ECG-based 
biometric recognition techniques, highlighting its 
efficacy.

The study outlined in reference [12] introduces 
an innovative approach for automatically 
distinguishing between shockable and non-
shockable ventricular arrhythmias, employing a one-
dimensional Convolutional Neural Network (1D 
CNN). The authors processed 2-second ECG 
fragments using an eleven-layer CNN model for 
precise identification of life-threatening ventricular 
arrhythmias. The experiments demonstrated the 
effectiveness of the proposed approach, achieving a 
maximum accuracy of 93.18%.

In reference [14], an automated ECG 
classification method is introduced, which 
combines Continuous Wavelet Transform (CWT) 
with Convolutional Neural Networks (CNN). 
Alongside scalograms, the authors incorporated 
four RR interval features extracted during 
preprocessing. These features were integrated with 
CNN operations, feeding into a fully connected 
layer specifically designed for ECG classification. 

The study showcased the effectiveness of this 
approach in automating ECG classification.

In their study [9], researchers introduced a model 
that integrates Continuous Wavelet Transform 
(CWT) with the deep neural network CNN AlexNet. 
This model aims to classify various types of cardiac 
arrhythmias and congestive heart failure using ECG 
data. The research emphasized the effectiveness of 
this approach in accurately predicting prevalent heart 
conditions such as arrhythmias and congestive heart 
failure. Such investigations significantly progress 
ECG analysis methodologies by combining the 
benefits of continuous wavelet transform with the 
capabilities of convolutional neural networks.

In this work, we apply Continuous Wavelet 
Transform to 2-second ECG fragments and utilize 
transfer learning with a pre-trained convolutional 
neural network, AlexNet. The experimental results 
show an average classification accuracy of 96.2% 
across all classes. This performance significantly 
surpasses previous maximum accuracy estimates of 
93.18% using a 1D-CNN neural network [12] and 
94.12% using a Long Short-Term Memory (LSTM) 
neural network [8], both on similar ECG data classes.

2 Description of ECG Data

This research utilizes a database of ECG 
fragments, which is an essential resource for medical 
professionals and researchers studying cardiac 
arrhythmias. This database [1] contains a set of 2-
second fragments with rhythm disturbances. The 
fragments are categorized into distinct classes based 
on the level of danger posed to the patient's life. This 
database is designed for practical application in the 
development and testing of algorithms capable of 
detecting dangerous arrhythmias in continuous 
monitoring systems. It contains 1016 
electrocardiogram ECG fragments, each marked with 
one of four classes. These classes encompass: A1 - 
Life-threatening arrhythmias necessitating immediate 
resuscitation, A2 - Life-threatening ventricular 
arrhythmias, A3 - Supraventricular arrhythmias, and 
A4 - Sinus rhythm. The quantitative composition of 
various types of arrhythmias is presented in Table 1.
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Table 1 – Content of the ECG database 

 
Class Types of 

arrhythmias 

Number of 

segments 

In total within the 

class of segments 

A1 VF 240 337 

VFL 97 

A2 VTHR 169 169 

A3 NOD 12 106 

BI 8 

SBR 1 

SVTA 39 

AFIB 46 

A4 Ne  40 200 

N 107 

BBB 53 
 

 
In table 1 the following abbreviations are used: 

VF - ventricular fibrillation, VFL - ventricular flutter, 
VTHR - high-frequency ventricular tachycardia, 
NOD – nodal (a-v) rhythm, BI – first degree heart 
block, SBR – sinus bradycardia, SVTA – 
supraventricular tachycardia, AFIB – atrial fibrillation 
, Ne – normal rhythm with single extrasystoles, N – 
normal sinus rhythm , BBB – sinus rhythm with 
bundle branch block. Apart from utilizing fragments 
extracted from the ECG database, we expanded our 
dataset by integrating synthetic data generated 
through the SMOTE method. This strategic 
augmentation was employed to rectify the inherent 
imbalance in our dataset, thereby fortifying the 
reliability and comprehensiveness of our analysis. 
SMOTE (Synthetic Minority Over-sampling 
Technique) is a popular algorithm used in the field of 
machine learning for handling imbalanced datasets. 
Imbalanced datasets are those where the number of 
examples in one class (the minority class) is much 
smaller than the number of examples in another class 
(the majority class). In the real world, oftentimes we 
end up trying to train a model on a dataset with very 
few examples of a given class (e.g. rare disease 
diagnosis, manufacturing defects, fradulent 
transactions) which results in poor performance. Due 
to the nature of the data (occurrences are so rare), it’s 
not always realistic to go out and acquire more. One 
way of solving this issue is to under-sample the 
majority class. That is to say, we would exclude rows 
corresponding to the majority class such that there are 
roughly the same amount of rows for both the majority 
and minority classes. However, in doing so, we lose 
out on a lot of data that could be used to train our model 
thus improving its accuracy (e.g. higher bias). Another 
other option is to over-sample the minority class. In 

other words, we randomly duplicate observations of the 
minority class. The problem with this approach is that it leads 
to overfitting because the model learns from the same 
examples. This is where SMOTE comes in. At a high level, the 
SMOTE algorithm can be described as follows: 

 Take difference between a sample and its nearest 

neighbour 

 Multiply the difference by a random number between 0 

and 1 

 Add this difference to the sample to generate a new 

synthetic example in feature space  

 Continue on with next nearest neighbour up to user-

defined number 
Advantages of SMOTE: 
Improved Model Performance: By balancing the 

dataset, models can better learn the characteristics of both 
classes, improving metrics like recall and F1-score for the 
minority class. 

Versatility: SMOTE can be applied to various types of 
data, including numerical, categorical (with modifications), 
and even text or image data with appropriate feature 
representations. 

Simple and Effective: SMOTE is relatively easy to 
implement and often provides substantial performance 
improvements for imbalanced datasets. 

SMOTE works by creating synthetic examples from the 

minority class rather than by over-sampling with replacement. 

It does this by selecting examples that are close in the feature 

space, drawing a line between the examples in the feature 

space and generating new examples along this line. This helps 

to balance the class distribution in the dataset, which can 

improve the performance of machine learning models, 

especially when the minority class is important. The Synthetic 

Minority Over-sampling Technique algorithm works: 
• Identify Minority Class Instances: First, the algorithm 

identifies the instances belonging to the minority class in the 
dataset. These are the instances that are relatively rare 
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compared to the majority class.
• Select Nearest Neighbors: For each minority
class instance, the algorithm finds its k nearest
neighbors. The number of neighbors to consider (k)
is usually specified by the user.
• Randomly Generate Synthetic Instances: For
each minority class instance, SMOTE randomly
selects one of its nearest neighbors and creates a
synthetic instance along the line joining the two
instances in the feature space. The algorithm
generates synthetic instances until the desired
balance between the minority and majority class is
achieved.
• Repeat if Necessary: Depending on the desired
level of imbalance reduction, SMOTE may repeat
the process multiple times, creating more synthetic
instances for each minority class instance.
By generating synthetic instances, SMOTE
effectively increases the representation of the
minority class in the dataset, making it more
balanced and improving the performance of
machine learning algorithms trained on imbalanced
datasets.

       3 Continuous Wavelet transform

       The continuous wavelet transform (CWT) of an 
ECG (Electrocardiogram) signal is a mathematical 
operation used to analyze the signal's time-
frequency characteristics. It involves decomposing 
the signal into different scales and frequencies using 
wavelets, which are small, localized functions. This 
transformation helps in identifying important 
features of the ECG signal across both time and 
frequency domains, aiding in tasks such as 
heartbeat detection, arrhythmia diagnosis, and 
signal denoising. Converting an ECG signal from 
the time domain to the time-frequency domain 
using Continuous Wavelet Transform (CWT) offers 
several advantages:
• Time-Frequency Localization: CWT provides 
excellent localization in both time and frequency 
domains, allowing for precise identification of 
signal components and features at different scales.
• Multiresolution Analysis: CWT decomposes the 
signal into multiple scales, enabling the detection of 
both low and high-frequency components 
simultaneously. This is crucial for capturing 
important details in ECG signals, such as P-waves, 
QRS complexes, and T-waves, which occur at 
different frequencies.
• Adaptability to Signal Variability: ECG signals 
can vary significantly in terms of amplitude, 
frequency, and duration due to factors like patient 

condition and electrode placement. CWT adapts to 
these variations by adjusting the scale of the wavelet 
basis function, ensuring effective analysis across 
different signal characteristics.
• Feature Extraction: The time-frequency 
representation obtained through CWT facilitates 
efficient feature extraction from ECG signals. This 
is essential for automated ECG analysis tasks, 
including heartbeat classification, arrhythmia 
detection, and ischemia monitoring.
• Noise Robustness: CWT offers inherent noise 
robustness by focusing on localized signal 
characteristics. This helps in reducing the impact of 
noise and interference present in ECG recordings, 
leading to more accurate analysis results.
• Interpretability: The time-frequency representation 
obtained from CWT provides intuitive visual 
insights into the signal's characteristics, making it 
easier for clinicians and researchers to interpret and 
analyze ECG data.

The continuous wavelet transform at different 
time scales characterizes the signal in different 
frequency ranges, while the discrete wavelet 
transform (DWT) is limited to scales that are powers 
of two. Using CWT instead of DWT provides more 
options. Let s be a signal and ψ a wavelet. With 
continuous transformation, the wavelet coefficients 
of the signal s, corresponding to the scale factor a and 
position b, are determined by formula (1)[17]:

  (1)

Here, s(t)- represents the given signal.
In this study, the results of Continuous Wavelet 
Transform (CWT) yield a collection of wavelet 
coefficients dependent on scale (a) and shift (b). 
These coefficients are utilized in the form of a 
scalogram, serving as the input [15] to the deep 
neural network AlexNet for disease classification. 
Figure 5a displays the original ECG signal, while 
Figure 5b illustrates the wavelet scalogram of the 
ECG signal. The wavelet scalogram serves as a three-
dimensional representation of one-dimensional time 
signal data. Time is depicted on the X-axis, 
frequency on the Y-axis, and the Z-axis (color-coded 
from low values in blue to high values in red) 
represents the outcome of the wavelet transform of 
the signal at each time and frequency point.

    4 AlexNet – the utilized machine learning model

     Cardiac arrhythmia is a condition characterized by 
irregularities in the rhythm, rate, and sequence of 
heart contractions. It can arise from disorders within
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the heart or disruptions in the functionality of other 
bodily organs and systems. Heart irregularities pose 
significant risks, potentially leading to severe 
health complications or even patient fatality. 
Hence, initiating treatment for arrhythmia promptly 
upon the onset of initial symptoms is crucial for 
mitigating potential harm. In this section, the use of 
the AlexNet model for the classification of four 
classes of dangerous arrhythmias is discussed, 
employing a database of ECG signal fragments [1] 
and transforming 2-second signal fragments into 
scalograms using CWT [9,11,15,18].
     AlexNet, a convolutional neural network, has 

significantly impacted the advancement of machine 
learning, particularly in computer vision 
algorithms. It achieved a remarkable victory in the 
ImageNet LSVRC-2012 image recognition 
competition, surpassing competitors by a 
considerable margin . Its architecture bears 
resemblance to Yann LeCun's LeNet network, 
albeit with more filters per layer and nested 
convolutional layers. AlexNet's structure 
encompasses convolutions, max pooling, dropout, 
data augmentation, ReLU activation functions, and 
stochastic gradient descent. 
      The architecture of AlexNet consists of eight 

layers, including five convolutional layers, two 
fully connected layers, and one softmax output 
layer. The network has a total of 60 million 
parameters and was trained on a dataset of 1.2 
million images from 1,000 different classes. Below 
is a concise overview of each layer [19]:
• Convolutional Layer 1 (Conv1):This layer
convolves the input image with 96 filters, each
having a size of 11×11×3. The stride of 4 indicates
that the filter moves 4 pixels at a time horizontally
and vertically. ReLU activation is applied to
introduce non-linearity, enhancing the network's
ability to learn complex patterns.
• Max Pooling Layer 1: Following Conv1, max
pooling is applied with a pool size of 3×3 and a
stride of 2. This operation reduces the spatial
dimensions of the feature maps by a factor of 2,
aiding in computational efficiency and creating
translation invariance.
• Convolutional Layer 2 (Conv2): Conv2 applies
256 filters of size 5×5×96 to the feature maps
produced by the previous layer. The stride of 1
preserves spatial resolution, while a padding of 2

maintains the spatial dimensions of the feature 
maps. ReLU activation introduces non-
linearity.maintains the spatial dimensions of the 
feature maps. ReLU activation introduces non-
linearity.
• Max Pooling Layer 2: Similar to Max Pooling
Layer 1, this layer applies max pooling with a
3×3 window and a stride of 2, further reducing
the spatial dimensions of the feature maps.
• Convolutional Layer 3 (Conv3): Conv3 consists
of 384 filters with a size of 3×3×256. The stride
of 1 and padding of 1 ensure that the spatial
dimensions of the feature maps remain the same.
ReLU activation is applied for introducing non-
linearity.
• Convolutional Layer 4 (Conv4): This layer has
384 filters of size 3×3×384. It operates similarly
to Conv3, preserving spatial dimensions with a
stride of 1 and padding of 1, while ReLU
activation introduces non-linearity.
• Convolutional Layer 5 (Conv5): Conv5 applies
256 filters of size 3×3×384. With a stride of 1
and padding of 1, it maintains spatial
dimensions. ReLU activation functions are used
for non-linearity.
• Fully Connected Layers (FC1 and FC2): FC1
and FC2 are fully connected layers with 4096
neurons each. They take the flattened output of
the last convolutional layer as input. ReLU
activation functions introduce non-linearity,
aiding in learning complex patterns in the data.
• Output Layer (Softmax): The output layer
produces class probabilities using the softmax
activation function, allowing the model to output
probabilities for each of the 1000 ImageNet
classes.
Throughout the network, local response
normalization (LRN) and dropout are also
applied to regularize the model and prevent
overfitting during training. These techniques
contribute to the overall robustness and
generalization ability of the AlexNet architecture.

40
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              a)  b)

Figure 5 – a) Segmented ECG signal; b) its scalogram

A pivotal innovation in AlexNet is its adoption 
of rectified linear unit (ReLU) functions as 
activation functions. ReLU, a widely employed 
nonlinear activation function in deep learning, maps 
input values to a range between 0 and positive 
infinity. If the input value is zero or negative, ReLU 
outputs zero; otherwise, it outputs the original input 
value.

The impressive performance of AlexNet in the 
ImageNet competition underscored the promise of 
deep learning in image recognition endeavors. 
Comprising eight layers—five convolutional and 
three fully connected - AlexNet is celebrated for its 
depth and utilization of rectified linear units (ReLU) 
as activation functions, a key factor contributing to 
its success. These layers autonomously and 
adaptively acquire spatial feature hierarchies based 
on input images. For instance, the initial layer 
captures basic edge features, while subsequent 
layers progressively discern more intricate patterns 
using features from prior layers. Pooling layers 
interspersed amid convolutional layers decrease 
spatial dimensions, thus reducing computational 
demands and imparting a degree of translation 
invariance. The final three layers in AlexNet are 
fully connected, meaning each neuron in one layer 
is linked to every neuron in the subsequent layer. 
The ultimate layer comprises 1,000 blocks 
corresponding to the 1,000 classes in the ImageNet 
dataset, facilitating the derivation of the probability 
distribution for these classes. 

5 Experimental results

In this study, we introduced a deep 
convolutional neural network architecture to 
classify a dataset containing four categories of life-
threatening arrhythmias. There were a total of 4000 
samples, each category included 1000 samples. The 
dataset was split into training, validation, and test 
sets following an 80:10:10 ratio. Specifically, 2,900 
samples were designated for training, 550 for 
validation, and 550 for testing. The model was 
tested on an independent dataset comprising 550 
samples, with equal representation of each class. 
We achieved an overall average classification 
accuracy of 98.2% on this test set. This 
performance significantly surpasses previous 
estimates, which reported a maximum accuracy of 
93.18% using a one-dimensional convolutional 
neural network model on the same ECG classes 
[12], and 94.12% using a long short-term memory  
neural network on the same ECG dataset [8]."

The classifier's performance is evaluated using 
various metrics such as accuracy, sensitivity, 
specificity, precision, and F1 Score. These metrics 
can be calculated as follows:

(2)
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Our model demonstrated exceptional average 
precision, recall, and F1-score, resulting in an 
impressive average accuracy of 98.7% on the testing 
dataset, underscoring its capability to effectively 
classify the data. The remarkable accuracy of our 
model can be attributed to the utilization of 
sophisticated machine learning methodologies like 
neural networks and deep learning. Figure 6 displays 
the error matrix for the test set and table 2 shows the 
results of the proposed method. 

Table 2 – Results of the proposed method 

Accuracy Sensitivity Specificity Precision F1score 

98.2% 98.2% 98.2% 98.2% 98.0% 

Figure 6 – Confusion matrix for the test set 

6 Conclusion 

This study has achieved a significant 
breakthrough in accuracy when classifying dangerous 
cardiac arrhythmias based on ECG data. Our unique 
method, which is centered around recognizing four 
classes of arrhythmias in 2-second ECG segments, 
combines continuous wavelet transformation with the 
application of the AlexNet neural network using 
transfer learning. The research results have 
demonstrated outstanding average accuracy of 98.2% 
on the test set, notably surpassing previous maximum 
values of 93.18% reported by other researchers for 
similar ECG classes. The innovative approach of 
representing one-dimensional signals as two-
dimensional images introduces substantial novelty to 
the obtained results. This approach not only holds

practical significance for enhancing cardiac 
monitoring systems but also provides scientific 
support for the effectiveness of continuous wavelet 
transformation in the automatic recognition of one-
dimensional signals. The obtained results can be 
applied for the further development of neural 
network architectures in ECG classification 
systems, enhancing their efficiency, and introducing 
new standards in the field of medical technology.
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